ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 26.10.2023
Просмотров: 48
Скачиваний: 2
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Рисунок 2. Пьезометрический график тепловой сети
Ордината Hсум, замыкающая подающую и обратную в начале магистрали(у источника тепла), изображает суммарное падение давления подающей и обратной магистрали и концевого ввода (напор у вывода из котельной). Нп – потребный напор подпиточного насоса при динамическом режиме. Нсн – напор сетевого насоса. Hит – потери напора в коммуникациях источника теплоты.
4.ПРИМЕР 3. Для того, чтобы построить пьезометрический график, или как я его называю, после того как я изучила данную тему, график давлений, необходимо:
1. Схема тепловой сети, с разветвлениями по участкам. На схеме должны быть указаны диаметры трубопроводов, их протяженность, номера участков и др.данные.
2. Профиль магистрали (условно принимают отметку земли).
3. Гидравлический расчет тепловой сети. Это вообще ключевой момент.
5. Гидравлический расчёт тепловой сети
Основной целью гидравлического расчета на стадии проектирования является определение диаметров трубопроводов по заданным расходам теплоносителя и располагаемым перепадам давления в сети, или на отдельных участках теплосети. В процессе же эксплуатации сетей приходиться решать обратную задачу – определять расходы теплоносителя на участках сети или давления в отдельных точках при изменении гидравлических режимов. Без расчетов по гидравлике не построить пьезометрический график теплосети. Также этот расчет необходим для выбора схемы подключения внутренней системы теплоснабжения непосредственно у потребителя и выбора сетевых и подпиточных насосов.
Как известно, гидравлические потери в сети складываются из двух составляющих: из гидравлических линейных потерь на трение и потерь даления в местных сопротивлениях. Под местными сопротивлениями подразумеваются – задвижки, повороты, компенсаторы и т.п.
То есть ∆P = ∆Pл + ∆Pмест,
Линейные потери на трение определяют из формулы:
где λ – коэффициент гидравлического трения ; l – длина трубопровода, м ; d – диаметр трубопровода внутренний, м; ρ – плотность теплоносителя, кг/м³; w² — скорость движения теплоносителя, м/с.
В этой формуле коэффициент гидравлического трения определяем по формуле А.Д.Альтшуля:
где Re — число Рейнольдса, kэ/d — эквивалентная шероховатость трубы. Это справочные величины. Потери в местных сопротивлениях определяем по формуле:
где ξ – суммарный коэффициент местных сопротивлений. Его необходимо просчитать вручную используя таблицы со значениями коэффициентов местных сопротивлений.
Для выполнения гидравлического расчета вам обязательно потребуется схема тепловой сети, вот примерно в таком виде:
На самом деле схема, конечно, должна быть более развернутой и подробной. Из схемы теплосети нам нужны такие данные как: длина l трубопровода, расход G, и диаметр трубопровода d.
Как выполнять гидравлический расчет? Вся тепловая сеть, которую необходимо просчитать, делится на так называемые расчетные участки. Расчетный участок – это участок сети, на котором расход не изменяется. Сначала гидравлический расчет ведут по участкам в направлении главной магистрали, которая соединяет теплоисточник с наиболее удаленным потребителем тепла. Затем уже рассчитывают второстепенные направления и ответвления теплосети. Мой гидравлический расчет участка тепловой сети можно скачать здесь:
Гидравлический расчет теплосети
Это, конечно, расчет только одной ветки теплосети (гидравлический расчет теплосети большой протяженности достаточно трудоемкое дело), но достаточно для того, чтобы понять, что такое расчет гидравлики, и даже неподготовленному человеку начать считать гидравлику.
Продолжение примера 3
4. Высота зданий по теплотрассе.
5. Напор концевого абонента тепловой сети.
В последнем, пятом пункте напор у концевого абонента принимается, как правило, равным необходимому располагаемому напору перед элеватором (для графика 150/70 °C – не менее 15 м.в.ст., для графика 130/70 °C — не менее 12 м.в.ст.). Необходимый напор умножается на коэффициент 1,5. Если есть вероятность и перспектива дальнейшего строительства зданий, то необходимый напор принимают не менее 20 м.в.ст.
Если все вышеприведенные исходные данные у вас есть, то можно начинать составление пьезометрическиго графика. Пьезометрический график (рис.1) состоит из следующих элементов:
1. Линия давлений в подаче
2. Линия давлений в обратке
3. Линия статического давления
Вот здесь то и пригодятся результаты гидравлического расчета тепловой сети, так как уклоны в линии подачи, и в линии обратки характеризуют падение давления в теплосети. И чем больше цифровые значения падения давления, тем круче линия графика давления (пьезометрического графика).
Линия, замыкающая подачу и обратку у концевого потребителя, отображает необходимый потребный напор, и принимается из исходных данных.
Линия, замыкающая линию подачи и обратки в начале тепловой сети (от теплоисточника) означает суммарное падение давления подачи и обратки и концевого ввода (напор у вывода из теплоисточника).
Линия давлений обратки пьезометрического графика должна быть достаточно высокой, это говорит о наполнении местных систем теплоснабжения зданий. Также она не должна пересекать здания на графике. Это — условие бесперебойности теплоснабжения. Но одновременно минимальная линия давлений пьезометрического графика в обратке должна быть такой, чтобы не повредились чугунные радиаторы отопления. Об этом чуть ниже по тексту.
Выполнение всех этих условий очень зависит от рельефа и от высоты зданий по теплотрассе. Ввиду этого начальную точку линии давлений зачастую приходится искать методом подбора.
Если профиль местности достаточно спокойный, то построение пьезометрического графика начинают с нейтральной точки. Нейтральную точку у всасывающего патрубка сетевого насоса принимаем так, чтобы обратка магистрали теплосети располагалась на 3-5 м.в.ст. выше, чем наиболее высоко расположенное здание.
Какими же требованиями к режимам давлений в тепловой сети следует руководствоваться при построении пьезометрического графика? Рассмотрим два режима давлений в тепловой сети. А именно, динамический — режим, когда работают сетевые насосы. И статический режим — когда сетевые насосы выключены. При динамическом режиме необходимо выполнение следующих требований.
Для обратного трубопровода:
1. Давление в обратке должно быть выше статического давления в местных системах отопления, а значит линия обратки должна располагаться на графике выше любого из зданий, и с запасом на 3 — 5 м.в.ст.
2. Максимальное давление должно быть не выше 60 м.в.ст. Это необходимо для того, чтобы не разрушались чугунные ралиаторы отопления.
3. Минимальное давление должно быть не меньше 5 м.в.ст. Это необходимо для того, чтобы не происходил подсос воздуха в трубопровод теплоснабжения, и не происходил разрыв циркуляции во внутренних системах теплоснабжения и коррозия.
Для подающего трубопровода:
Минимальное давление принимаем из условия невскипания теплоносителя в теплосети:
при t1 = 130 °С — 18 м.в.ст.
при t1 = 140 °С — 27 м.в.ст.
при t1 = 150 °С — 39 в.ст.
Рассмотрим теперь статистический режим. Это режим для линии статического давления. Как известно, статическое давление создается при помощи подпиточного насоса. Это давление обеспечивает заполнение внутренних систем отопления даже при остановке сетевых насосов. Следовательно, в межотопительный период в тепловой сети и местных внутренних системах отопления должно быть давление выше статического, для того, чтобы не было попадания воздуха и коррозии трубопроводов.
6.Вывод
Значит, минимальное давление должно быть не меньше высоты самого высокого здания. Плюс запас по давлению 3 — 5 м.в.ст. Максимальное же давление принимаем 60 м.в.ст. Если давление будет больше, то есть вероятность разрушения радиаторов отопления. Особенно это касается чугунных радиаторов.
Использованная литература
-
https://teplosniks.ru/teplosnabzhenie/pezometricheskij-grafik-teplovoj-seti.html -
https://teplosniks.ru/teplosnabzhenie/gidravlicheskij-raschet-teplovyx-setej.html -
https://world-engineer.ru/proektirovanie/postroenie-pezometricheskogo-grafika-dlya-vodyanoj-teplovoj-seti.html -
https://zdamsam.ru/a45431.html
СОДЕРЖАНИЕ
-
Пьезометрический график тепловой сети -
Пример 1 -
Пример 2 -
Пример 3 -
Гидравлический расчёт тепловой сети -
Вывод -
Использованная литература
НАВОИЙСКИЙ ГОРНО-МЕТАЛЛУРГИЧЕСКИЙ КОМБИНАТ
НАВОИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГОРНЫЙ ИНСТИТУТ
Энерго-механический факультет
Самостоятельная работа
ПО ПРЕДМЕТУ ТЕПЛОСНАБЖЕНИЕ И ТЕПЛОВЫЕ СЕТИ
Тема: Построение пьезометрического графика
Принял: Бойназаров Г.Г.
Выполнила:
Студентка НГГИ ЭМФ кафедры ЭЭ
Группы 2-18 Э
Винокурова Александра