ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 26.10.2023
Просмотров: 62
Скачиваний: 4
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
СОДЕРЖАНИЕ
2) Классификация:
Естественная и искусственная
Примеры естественной плазмы: планетарная туманность, межпланетная плазма, ионосфера Земли, хромосфера Солнца и звезд, солнечный протуберанец, солнечная спикула, солнечный ветер, солнечная корона, фотосфера Солнца и звезд, хромосферная вспышка, молния.
Примеры искусственной плазмы: плазменная панель(телевизор, монитор), вещество внутри люминесцентных и неоновых ламп, плазменные ракетные двигатели, плазменная лампа, влияние на вещество лазерным излучением, яркая сфера ядерного взрыва и др.
Низкотемпературная и высокотемпературная
Низкотемпературная(температура меньше миллиона градусов Кельвина). Она, как правило, представляет собой частично ионизированный газ, т. е. число нейтральных атомов и молекул значительно превышает число заряженных частиц – электронов и ионов. Для низкотемпературной плазмы характерна малая степень ионизации – до 1 %.
Если в низкотемпературной плазме содержится много макроскопических твердых частичек (размером от долей до сотен микрометров) с большим электрическим зарядом, которые либо самопроизвольно образуются в плазме в результате различных процессов, либо вводятся в плазму извне, то она называется пылевой плазмой. Пылевая плазма является частным случаем низкотемпературной плазмы.
Низкотемпературная плазма в соответствии с физическими свойствами может быть стационарной, нестационарной, квазистационарной, равновесной, неравновесной, идеальной, неидеальной.
Примеры низкотемпературной плазмы и ее источники: пламя, искра, различные виды лазеров, катодный взрыв, катодное пятно, катодный факел, плазмотрон, плазменная горелка, фоторезонансная плазма, термоэмиссионный преобразователь, МГД-генератор.
Высокотемпературная (температура миллион градусов Кельвина и выше).Высокотемпературная плазма также называется еще горячей плазмой. Горячая плазма почти всегда полностью ионизирована (степень ионизации 100 %).
Вещество в состоянии высокотемпературной плазмы имеет высокую ионизацию и электропроводность, что позволяет использовать ее в управляемом термоядерном синтезе.
Полностью ионизированная и частично ионизированная
Отношение числа ионизованных атомов к полному их числу в единице объёма называют степенью ионизации плазмы. Степень ионизации плазмы в большой степени обуславливает её свойства, в том числе электрические и электромагнитные.
Плазму со степенью ионизации 1 (или 100 %) называют полностью ионизованной плазмой.
Субстанции со степенью ионизации менее 1 (или менее 100 %), называют частично ионизированной плазмой;
Равновесная и неравновесная
Данные виды характерны только для низкотемпературной плазмы.
Равновесной плазмой называется низкотемпературная плазма, если её компоненты находятся в состоянии термодинамического равновесия, т. е. температура электронов, ионов и нейтральных частиц совпадает. Равновесная плазма обычно имеет температуру больше нескольких тысяч градусов Kельвина.
Примерами равновесной плазмы могут быть ионосфера Земли, пламя, угольная дуга, плазменная горелка, молния, оптический разряд, фотосфера Солнца, МГД-генератор, термоэмиссионный преобразователь.
В неравновесной плазме температура электронов существенно превышает температуру других компонентов. Это происходит из-за различия в массах нейтральных частиц, ионов и электронов, которое затрудняет процесс обмена энергией.
Плазменные субстанции, создаваемые искусственным путем, изначально не имеют термодинамического равновесия. Равновесие появляется лишь при существенном разогреве вещества, а значит увеличении количества хаотических столкновений частиц друг с другом, что возможно лишь при уменьшении переносимой ими энергии;
Существуют и другие подвиды плазменной субстанции.
2.5.Где используют?
В последнее время появилось довольно много приборов, устройство которых предусматривает работу, где применяется плазма. Впервые ионизированные газы начали использоваться при создании светотехники. Ярким тому примером станут газоразрядные лампы. Принцип действия таких лампочек заключается в передаче электрического тока через газ заключенный в колбе. В результате наблюдается ионизация с получением ультрафиолетового излучения. Последнее поглощается люминофором, что и вызывает его свечение в видимом для человеческого глаза диапазоне.
Особо востребованной технологией является плазменная резка. Таким оборудованием создается разогретая струя, способная плавить металлы и практически все вещества, встречаемые на ее пути. Обычно такое оборудование превращает в ионизированный газ обыкновенную воду. Сначала она испаряется, после чего под воздействием электрического тока из нее формируется плазменный пучок.
Принцип плазмы может применяться для осуществления передачи данных на расстояние. В связи с этим проводится активная разработка плазменных антенн. Данная идея запатентована еще в 1919 году, но так и не была полноценно применена вплоть до начало XXI века. Технические наработки испытания такого оборудования дают основание полагать, что эта технология придет на замену привычного для всех wi-fi соединения. Она обладает большей скоростью передачи данных, а также возможностью действия в большом радиусе. Проводимость плазмы превышает проводимость серебра, которое является одним из лучших твердых веществ для передачи зарядов.
Также в промышленности началось внедрение технологии напыления расплавленного материала под воздействием плазменной струи. Металл, или другой материал, расплавляется, после чего подается на струю в плазму. В результате он распыляется, дополняя струю. После этого взаимодействия с плазмой прекращается, и материал оседает на требуемых поверхностях в виде тонкого покрытия. Этот метод провести обработку гораздо быстрее, чем в случае с электрохимическим методом.
3. Заключение
Плазма – ещё мало изученный объект не только в физике, но и в химии (плазмохимии), астрономии и многих других науках. Поэтому важнейшие технические положения физики плазмы до сих пор не вышли из стадии лабораторной разработки.
В настоящее время плазма активно изучается т.к. имеет огромное значение для науки и техники. Эта тема интересна ещё и тем, что плазма – четвёртое состояние вещества, о существовании которого люди не подозревали до XX века.
За изучением Плазмы и ее аспектов в современном мире стоит уровень развития нашей планеты.
4.Список литературы
1. Арцимович Л.А. «Элементарная физика плазмы», М. Атомиздат,2007.
2.Ораевский Н.В. Плазма на Земле и в космосе, К. Наукова думка,2009.
3.Плазма (Википедия) - https://ru.wikipedia.org/wiki/Плазма
4. Статья «Успехи прикладной физики», 2015г., том 3, № 2 «Физика плазмы и плазменные методы»
5.Статья «Что такое четвертое состояние вещества, чем оно отличается от трех других и как заставить его служить человеку?». Автор: Левин Алексей.- https://www.popmech.ru/science/10150-vezdesushchaya-plazma-chetvertoe-sostoyanie-veshchestva/