Файл: Ведение Цели и задачи теплоэнергетики знакомство с историей теплоэнергетики понимание студентами объективного и полного представления о будущей профессиональной деятельности, её сферах и направлениях.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 29.10.2023

Просмотров: 142

Скачиваний: 3

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


На транспорте применяются все типы тепловых двигателей: на судах — паро- и газотурбинные, ДВС; в авиации — турбореактивные и реактивные; на автотранспорте, на строительных, дорожных и сельскохозяйственных машинах (включая тракторы) — ДВС.

В середине XX в. начинается быстрое развитие новой энерготехники. В декабре 1942 г. в США под руководством итальянца Э. Ферми был пущен первый ядерный реактор. В 1945 г. американские бомбы были взорваны над Хиросимой и Нагасаки. В 1954 г. была пущена первая в мире атомная электростанция в СССР, а в 1959 г. сдан в эксплуатацию первый атомный ледокол «Ленин». Так началась эра ядерной энергетики. Однако энергоресурсы урана и тория, даже при использовании их в быстрых реакторах (работающих с воспроизводством топлива), и термоядерного топлива, включающего тритий (получаемый из лития), сопоставимы с энергоресурсами органических ископаемых горючих, которые быстро истощаются. Поэтому существенное превосходство ядерной энергетики над обычной будет достигнуто только при использовании реакции синтеза дейтерия с дейтерием, запасы которого почти неисчерпаемы. Но для этого надо решить ряд трудных научно-технических проблем, на что потребуется не менее 30—40 лет.

Разрабатываются энергетические установки (мощностью до 200— 300 кВт) на дорогостоящих радиоактивных изотопах.

С 1958—1960 гг. на современном уровне науки и техники началось создание энергоустановок на основе давно известных явлений, позволяющих непосредственно генерировать электроэнергию: топливных элементов, термоэлектрогенераторов, магнитогазодинамических электрогенераторов, солнечных электрогенераторов и т. д. Интенсивно ведутся работы по теплофикационному использованию солнечной энергии.

Такова хронология истории теплоэнергетики, развившейся только в последние 150 лет. А как формировалась теплотехническая наука? В начальный период промышленной революции она отставала от практики, которая служила мощным стимулом ее развития.

Первый фундаментальный труд по теории теплотехники «Размышления о движущей силе огня и машинах, способных развивать эту силу» издал в 1824 г. французский инженер Сади Карно (1796—1832). Он предсказал, что тепловым машинам «суждено совершить большой переворот в цивилизованном мире», и задался целью определить причины их несовершенства. В своем труде Карно заложил основы термодинамики, поскольку там содержались (хотя и полученные с помощью теории «теплорода») и оба начала термодинамики, и ее основные понятия, и идеальный цикл тепловых машин, и другие важные положения.


Работа Карно прошла почти незамеченной. И лишь через 10 лет, после издания «Мемуара о движущей силе теплоты» Б. Клапейрона, она стала почти сенсацией. Клапейрон «перевел» ее на математический язык, вскрыв великое содержание этого труда, и первым применил графический метод исследования работы тепловых машин — метод циклов.

В 1845—1847 гг. трудами Р. Майера, Д. Джоуля, Г. Гельмгольца окончательно формулируется закон сохранения и превращения энергии. «Теперь было доказано, — писал позже Ф. Энгельс, — что все бесчисленные действующие в природе причины, которые до сих пор вели какое-то таинственное, не поддававшееся объяснению существование в виде так называемых сил... являются особыми... формами... энергии...» *) Недоверие к новому закону (названному первым началом термодинамики) быстро рассеивалось благодаря трудам В. Томсона (лорда Кельвина), Р. Клаузиуса, У. Ренкина и др.

В 1853 г. В. Томсон дает первое точное определение энергии. Клаузиус формулирует уже на основе механической теории тепла два начала термодинамики и получает знаменитое выражение к. п. д. идеального цикла Карно при наличии двух источников тепла разной (Т1 > Т2) температуры: ή = (Т1 - Т2)/ Т1. Одновременно публикует свой труд, посвященный термодинамике паров и газов, У. Ренкин. Он тоже доказывает, что в холодильник отводится часть тепла, полученного от нагревателя, другая же — пропорциональная работе — «исчезает».

В 1855—1865 гг. вводятся понятия обратимых и необратимых процессов и энтропии (Клаузиусом) — величины, рост которой в необратимых процессах характеризует ту часть энергии тел, которая не может быть превращена в работу, а рассеивается в виде теплоты. Поскольку все реальные процессы вследствие трения, теплопроводности и конечности времени их протекания необратимы, энтропия изолированных систем всегда возрастает. Эту формулировку второго начала термодинамики Клаузиус без должных оснований распространил на Вселенную, объявив о неизбежности ее «тепловой смерти». Последнее означало, что когда-то вся энергия, имеющаяся на Земле и в других частях Вселенной, превратится в тепло, а равномерное распределение последнего между телами земной природы и Вселенной приведет к выравниванию температуры и к полному прекращению превращений энергии.

Эта теория не учитывала бесконечности Вселенной, где процессы рассеивания и концентрации энергии должны чередоваться во времени и пространстве, — иначе как объяснить наличие запасов энергии на Земле и в Солнечной системе? Кроме того, австрийский физик Л. Больцман, один из творцов молекулярно-кинетической теории газов, доказал, что закон возрастания энтропии неприменим к Вселенной еще и потому, что он справедлив лишь для статистических систем, состоящих из большого числа хаотически движущихся частиц, поведение которых подчиняется законам теории вероятностей. Для них возрастание энтропии лишь наиболее вероятно, но с необходимостью должно наступать и маловероятное событие (флуктуация) — ее уменьшение. Во Вселенной же действуют динамические законы.



В те же годы независимо от Больцмана создает законченную систему статистической термодинамики скромный преподаватель колледжа США Д. У. Гиббс. По цельности, глубине и охвату она превосходит теорию Больцмана, но утверждает в принципе те же идеи. В отличие от классической термодинамики, решающей задачи на основе опытных зависимостей между макроскопическими параметрами системы (температура, давление и т. п.), статистическая термодинамика позволяет вычислять макроскопические характеристики и устанавливать зависимости между ними по данным о состоянии микрочастиц систем — их расположении, скоростях, энергии. Д. У, Гиббс внес немалый вклад и в классическую термодинамику, разработав метод потенциалов, установив правило фаз и др.

Так был заложен фундамент термодинамического метода и началась разработка его приложений, прежде всего к теории тепловых машин.

В конце XIX в. Ж. Гюи и А. Стодола ввели понятие работоспособности, или максимальной технической работы, которую может совершить система, имеющая температуру, отличающуюся от атмосферной при обратимом переходе ее в состояние равновесия с атмосферой. В 1956 г. Р. Рант дал этой величине название «эксергия». В отличие от энтропии, которая в реальных, необратимых процессах всегда возрастает сама по себе, не определяет работоспособности системы, в отличие от энергии, которая, строго говоря, не может «расходоваться» и «теряться» (по закону сохранения ее), эксергия — это запас работоспособности системы — по мере совершения ею работы она уменьшается, т. е. расходуется. Это сделало эксергетические расчеты очень популярными.

Другая ветвь теории теплотехники — теория тепломассообмена — уходит своими корнями в труды Г. Галилея и Ньютона. Последний еще в 1701 г. установил закон конвективного теплообмена. В 1822 г. Ж- Б. Фурье издает «Аналитическую теорию теплопроводности», считая, что он привел теорию теплообмена в такое же состояние, в какое была приведена механика трудами И. Ньютона... Однако для этого потребовалось еще более 100 лет. И только современные ученые развили теорию теплообмена до законченной системы.

Быстрый и мощный скачок в разработке теории поменял ее местами с практикой — теория стала освещать путь практике, служить указателем направлений и пределов совершенствования энерготехники. В результате на основе достижений НТР масштабы и темпы развития энергетики и потребления энергоресурсов достигли столь высоких значений, что в отдельных направлениях уже близки к предельным.


На выработку электроэнергии в развитых странах расходуется порядка 30—35 % энергоресурсов. Остальная часть энергоресурсов идет на транспортные двигатели и на получение тепла для промышленности и отопления. При этом непосредственно используются тепловая (около 75%), механическая (около 24%), электрическая и световая (в сумме порядка 1%) энергии.

В нашей стране до революции энергетика была развита слабо. В 1913 г. мощность всех электростанций составляла порядка 1 млн. кВт, а выработка электроэнергии — до 2 млрд. кВт-ч. Интересно отметить, что 70% своей потребности в энергии Россия удовлетворяла за счет ветряных мельниц, перемалывая на них почти все свое зерно.

Роль энергетики в России впервые была должным образом оценена В. И. Лениным в «Наброске плана научно-технических работ» и в разработанном по его инициативе плане электрификации России (ГОЭЛРО). Этим планом намечалось за 15 лет построить 20 тепловых и 10 гидравлических электростанций, доведя их мощность до 1,75 млн. кВт, а выработку электроэнергии — до 8,8 млрд. кВт-ч. План ГОЭЛРО был выполнен за 10 лет, а уже в 1940 г. выработка электроэнергии превысила дореволюционную в 25 раз. СССР вышел по этому показателю на второе место в мире после США.

Энергетическое хозяйство СССР достигло уровня, для которого характерны: резко возрастающая концентрация производства энергоресурсов и электроэнергии со все большей централизацией их распределения; широкие технические возможности и экономическая целесообразность взаимозаменяемости полезных видов энергии, энергетических установок и энергоресурсов. На этой основе образовались большие системы энергетики, управляемые автоматически и включающие электроэнергетические (и входящие в них теплоснабжающие), нефтеснабжающие, газоснабжающие и углеснабжающие системы, среди которых формируется и система ядерной энергетики.

В связи с необходимостью экономить нефть и газ, запасы которых быстро истощаются, а новые месторождения требуют больших затрат для их разработок, центр тяжести переносится на использование низкокалорийных углей, ядерных топлив и гидроэнергии, пригодных лишь для электростанций. Для транспортной энергетики в будущем предполагается перерабатывать твердые органические горючие в жидкие и получать водород. Последний выгоднее, так как сжигается без загрязнения окружающей среды, потери энергии на его транспортировку ниже, чем для электроэнергии, и т. д., но его широкое применение требует дорогостоящей и длительной подготовки. В резерве остаются электрохимические аккумуляторы, которые пока не позволяют увеличить однозарядный пробег электромобиля свыше 100 км и тоже требуют немало средств для подготовки к их широкому применению. Для технологических нужд промышленности и отопления помимо водорода предполагается использовать ядерную энергию, что требует налаживания промышленного производства высокотемпературных (900— 1100° С) реакторов, которые пока имеются в единичных исследовательских экземплярах.


Все сказанное выше подчеркивает важность экономного расходования не только электрической энергии, но и более 70% энергоресурсов, расходуемых непосредственно на получение тепла и механической работы. Таким образом, знания, приобретаемые в курсе «Теплотехника», будут способствовать выполнению задачи повышения эффективности и качества в области теплоэнергетики.

  1.   1   2   3   4   5