Файл: 8. Охрана труда при работе с ионизирующими излучениями.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 30.10.2023

Просмотров: 39

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
 включают предупредительный и текущий санитарный надзор за радиологическими объектами.

Предупредительный санитарный надзор - комплекс мероприятий, проводимых на стадии проектирования, строительства и ввода в эксплуатацию радиологических объектов:

- отвод участка под застройку объекта;

- рассмотрение проекта индивидуального строительства объекта;

- рассмотрение проекта реконструкции объектов;

- рассмотрение технической документации на установки и приборы с ИИИ;

- контроль хода строительства и реконструкции объектов, на которых будут использоваться ИИИ;

- оформление документации на получение ИИИ в открытом и закрытом виде.

Текущий санитарный надзор включает комплекс мероприятий, проводимых на стадии эксплуатации радиологических объектов:

- учет предприятий и учреждений, на которых используются РВ и ИИИ;

- контроль за транспортировкой, хранением и эксплуатацией ИИИ;

- контроль за сбором, удалением и захоронением ИИИ;

- радиометрический и дозиметрический контроль лиц, работающих с ИИИ;

- организация и проведение медицинских предварительных и текущих осмотров;

- контроль за выполнением оздоровительных мероприятий.

Одним из важнейших элементов системы радиационной безопасности является радиационный дозиметрический контроль.

Можно выделить 2 вида радиационного дозиметрического контроля – индивидуальный и групповой.

Целью индивидуального контроля является определение индивидуальной дозы облучения. При работах с закрытыми источниками определяется индивидуальная доза внешнего облучения. При работах с открытыми источниками определяется суммарная доза внешнего и внутреннего облучения.

Средства индивидуальной защиты предназначены для защиты от внутреннего облучения радиоактивными веществами, а также — при внешнем облучении — от альфа- и мягкого бета-излучений (от гамма- и нейтронного излучений они не защищают). Индивидуальные средства защиты включают спецодежду, средства защиты органов дыхания и зрения.

При работах I класса и отдельных работах II класса работники обеспечиваются комбинезонами или костюмами, шапочками, легкой пленочной обувью или специальными ботинками, перчатками, бумажными полотенцами или носовыми платками разового пользования, а также средствами защиты органов дыхания. При работах II и III классов работники снабжаются халатами, шапочками, легкой обувью, перчатками, а при необходимости — средствами защиты органов дыхания.


Для выполнения ремонтных работ, при которых загрязнения могут быть очень большими, разработаны пневмокостюмы из пластических материалов с принудительной подачей воздуха под костюм. Пневмокостюм защищает основную спецодежду, органы дыхания и кожные покровы от радиоактивной пыли. Вследствие полной герметичности костюм можно дезактивировать на работающем после его выхода из загрязненной зоны.

Органы дыхания при работе с изотопами защищают посредством респираторов, пневмошлемов, противогазов. Наиболее надежен шланговый противогаз.

Для защиты глаз применяют очки закрытого типа со стеклами, содержащими свинец или фосфат вольфрама. При работах с источниками альфа- и бета-излучений для защиты лица и глаз используют защитные щитки из оргстекла.

Лекция

Ионизирующее излучение – излучение (электромагнитное, корпускулярное), которое при взаимодействии с веществом непосредственно или косвенно вызывает ионизацию и возбуждение его атомов и молекул.

Как известно, все атомы состоят из положительно заряженных ядер и вращающихся вокруг них отрицательно заряженных частиц – электронов. Последние вращаются вокруг ядра по замкнутым эллиптическим орбитам, которые располагаются в виде слоев или оболочек.

Чем больше заряд ядра, тем больше электронов содержит атом. Сумма зарядов электронов по абсолютной величине равна заряду ядра, что обеспечивает нейтральность атома в целом.

Ядро атома состоит из элементарных частиц нуклонов, которые существуют в виде протонов и нейтронов. Протон — это ядерная частица с положительным элементарным электрическим зарядом (+1). Нейтрон — ядерная частица, не обладающая зарядом.

Число протонов в ядре (М) определяет его заряд и соответствует порядковому (атомному) номеру элемента в периодической системе.

Сумма протонов и нейтронов соответствует массовому числу (М), которое является ближайшим целым числом по отношению к атомному весу.

Число нейтронов в ядре соответствует разнице между массовым числом и количеством протонов в ядре.

Атомы одного и того же элемента могут иметь ядра, содержащие одинаковые количества протонов, но отличающиеся друг от друга количеством нейтронов. Такие разновидности атомов получили название изотопов. Таким образом, у изотопов порядковый номер одинаков, а различаются массовые числа. Явление изотопии широко распространено. У водорода, например, имеется два устойчивых изотопа, у кислорода – три, у олова – десять.

Протоны и нейтроны, из которых состоит ядро, связаны между собой особыми силами притяжения, так называемыми ядерными силами. Особенность ядерных сил состоит в том, что их действие сказывается на очень коротких расстояниях, порядка размера ядра.

Наряду с силами притяжения, действующими между всеми частицами ядра, между протонами существуют также обычные электростатические силы отталкивания, уменьшающие устойчивость атомного ядра. Ядерные силы образуют устойчивые, наиболее крепко связанные комплексы нуклонов только при определенном соотношении протонов и нейтронов. У легких элементов периодической системы (у которых атомный номер меньше 20) отношение числа нейтронов к числу протонов соответствует приблизительно единице. Ядра таких элементов являются устойчивыми. С ростом атомного номера число нейтронов в ядре начинает превышать число протонов. Для тяжелых ядер соотношение между числом нейтронов и числом протонов достигает значений близких к 1,6, что и обуславливает их неустойчивость. Нарушение соотношения между числом протонов и нейтронов в ядре ведет к ослаблению ядерных сил и самопроизвольному превращению ядер, т. е. к радиоактивности.

Существует 2 вида ионизирующего излучения: корпускулярное и электромагнитное.

Корпускулярные – альфа- и бета-излучения, нейтронное излучение. Электромагнитные – гамма- и рентгеновское излучение.

Для оценки повреждающего действия ионизирующего излучения важно знать физические характеристики данного вида излучения:

- энергия излучения (максимальна у альфа)

- проникающая способность (максимальна у электромагнитных излучений).

Источник ионизирующего излучения – объект, который содержит радиоактивное вещество, или техническое устройство, которое создает или в определенных условиях способно создавать ионизирующее излучение.

Облучение - влияние на человека ионизирующего излучения от источников, которые находятся вне организма (внешнее облучение), или от источников, которые находятся внутри организма (внутреннее облучение).

В медицине используются закрытые и открытые источники ионизирующих излучений.

Закрытый источник - радиоактивный источник излучения, устройство которого исключает поступление радиоактивных веществ в окружающую среду в условиях применения и износа, на которые он рассчитан.

Закрытые источники, используемые в медицине, делятся на изотопные и неизотопные.

К неизотопным источникам относятся рентгеновские установки и ускорители элементарных частиц. Данные источники периодически генерируют излучение только в период их применения (когда на рентгеновскую трубку будет подано напряжение, и будет запущен ускоритель). Опасность для персонала отмечается только в период работы данных установок (опасность определяется напряжением, силой тока и материалом анода).


К изотопным относятся радионуклидные источники. Эти источники постоянно генерируют ионизирующее излучение, так как в основе их действия лежит распад радиоактивных веществ, который подчиняется основному закону радиоактивного распада.

Открытый источник - радионуклидный источник излучения, при использовании которого возможно поступление содержащихся в нем радиоактивных веществ в окружающую среду. Открытый источник дает излучение и радиоактивное загрязнение окружающей среды. Работа персонала с открытым источником может сопровождаться попаданием РВ как внутрь организма, так и на поверхность тела.

В действии ионизирующего излучения на вещество выделяют первичные и вторичные процессы.

Первичные – взаимодействие излучения с молекулой с образованием возбужденных молекул, ионов или осколков молекул – свободных радикалов.

Положительные ионы теряют электрон, отрицательные – присоединение электрон к нейтральному атому.

Вторичные – последующее превращение возбужденных молекул, ионов или радикалов. Химически активные вещества взаимодействуют с биологическими структурами, при которых отмечается деструкция структур, образование новых, не свойственных облучаемому организму соединений, а значит и структур.

Основные факторы,определяющие выраженность действия ионизирующего излучения на человека.

1. Поглощенная доза облучения. – это количество энергии поглощенной единицей массы облучаемого объекта от ионизирующего излучения. Единица измерения – Грей (Гр).

Биологическое действие ионизирующего излучения зависит не только от поглощенной энергии, но и от удельной плотности ионизации, создаваемой излучением. Это зависит от вида излучения.

2. Вид излучения.

Альфа излучение обладает максимальной ионизационной способностью. Для сравнения биологического действия различных видов излучений в радиобиологии было введено понятие радиационного взвешивающего фактора – коэффициент, учитывающий относительную биологическую эффективность разных видов ионизирующей радиации. За единицу приняты эффективности рентгеновского и гамма-излучения. То есть, сравниваем биологические повреждения от альфа- (коэффициент равен 20) и гамма-излучения (соответственно коэффициент равен 1) при одинаковых условиях облучения и одинаковых поглощенных доза облучения – получим, что альфа излучением вызовет «условно» 20-ти кратный повреждающий эффект.

Таким образом, для человека важна не только сама поглощенная доза, а доза облучения с учетом действия данного вида излучения – эквивалентная доза облучения органа – определяется произведением поглощенной в органе


дозы на радиационный взвешивающий фактор. Единица измерения – Зиверт (Зв), внесистемная – бэр.

Если облучение тела неравномерное (отложение радионуклида в отдельном органе, прицельный снимок), то используется производная от эквивалентной дозы облучения – эффективная доза облучения тела – произведение эквивалентных доз облучения органов на соответствующий тканевой взвешивающий фактор.

Тканевой взвешивающий фактор – коэффициент, который отражает относительную (относительно всего тела) вероятность стохастических (отдаленных, вероятностных) эффектов в ткани (органе) – равен отношению вреда облучения органа к вреду от облучения всего тела при одинаковых эквивалентных дозах.

3. Длительность и дробность облучения.

Более длительное и дробное облучение вызывает меньший повреждающий эффект в организме, нежели быстрое и одномоментное за счет восстановительных (репарационных) процессов в клетке и тканях.

4. Объем облучаемых тканей.

Биологический эффект зависит от того облучается все тело или только часть (как правило больший объем – большее повреждение). Облучение тела собаки в смертельных дозах при экранировании живота не дает летального исхода. Облучение органа человека при злокачественном новообразовании проводится дозами в несколько десятков Гр (несколько смертельных доз при общем облучении).

5. Радиочувствительность и функциональное назначение органов и тканей.

Радиочувствительность (степень повреждения) различных органов и тканей неодинакова. Большая радиочувствительность у половых клеток, красного костного мозга, значительно меньшая – кожи, мышц.

6. Способ облучения (внешнее и внутреннее).

Внутреннее облучение, при прочих равных условиях, более опасно (радионуклид разносится по всему организму – облучение всех органов и тканей).

7. Индивидуальные особенности организма.

Для каждого организма характерна своя скорость восстановительных (репарационных) процессов, что обуславливает выраженность повреждающего действия ионизирующей радиации.

8. Условия внешней среды.

При воздействии на человека наряду с ионизирующей радиацией других неблагоприятных (вредных) факторов, как правило, усиливаются изменения в облучаемом организме.

 Радиотоксичность - свойства радионуклидов вызывать патологические изменения при попадании в организм.

Радиотоксичность изотопов зависит от:

1. Вид радиоактивного превращения – наиболее опасно альфа-излучение (наибольшая энергия излучения).