Файл: ЧТО ЕСТЬ ФИЛОСОФИЯ.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 04.06.2021

Просмотров: 1309

Скачиваний: 13

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.



III.3. Естественнонаучная и математическая мысль эпохи Средневековья


Эпоха средних веков характеризовалась в Европе закатом классической греко-римской культуры и резким усилением влияния церкви на всю духовную жизнь общества. В эту эпоху философия тесно сближается с теологией (богословием), фактически становится ее «служанкой». Возникает непреодолимое противоречие между наукой, делающей свои выводы из результатов наблюдений, опытов, включая и обобщение этих результатов, и схоластическим богословием, для которого истина заключается в религиозных догмах.

Пока европейская христианская наука переживала длительный период упадка (вплоть до XII—ХШ вв.), на Востоке, наоборот, наблюдался прогресс науки. Со второй половины VIII в. научное лидерство явно переместилось из Европы на Ближний Восток. В IX веке, наряду с вышеупомянутым трудом Птолемея («Альмагест»), на арабский язык были переведены «Начала» Евклида и сочинения Аристотеля. Таким образом, древнегреческая научная мысль получила известность в мусульманском мире, способствуя развитию астрономии и математики. В истории науки этого периода известны такие имена арабских ученых, как Мухаммед аль-Баттани (850—929 гг.), астроном, составивший новые астрономические таблицы, Ибн-Юнас(950—1009 гг.), достигший заметных успехов в тригонометрии и сделавший немало ценных наблюдений лунных и солнечных затмений, Ибн аль-Хайсам (965—1020 гг.), получивший известность своими рабо­тами в области оптики, Ибн-Рушд (1126—1198 гг.), виднейший философ и естествоиспытатель своего времени, считавший Аристотеля своим учителем.

Средневековой арабской науке принадлежат и наибольшие успехи в химии. Большую роль в подъеме западной христианской науки сыграли университеты (Парижский, Болонский, Оксфордский, Кембриджский и др.), которые стати образовываться начиная с ХП века.

ХШ век характерен для европейской науки началом эксперимента и дальнейшей разработкой статики Архимеда. Здесь наиболее существенный прогресс был достигнут группой ученых Парижского университета во главе с Иорданом Неморарием (вторая половина XIII в.). Они развили античное учение о равновесии простых механических устройств, решив задачу, с которой античная механика справиться не могла, — задачу о равновесии тела на наклонной плоскости.

В XIV веке в полемике с античными учеными рождаются новые идеи, начинают использоваться математические методы, т. е. идет прогресс подготовки будущего точного естествознания. Лидерство переходит к группе ученых Оксфордского университета, среди которых наиболее зна­чительная фигура — Томас Брадвардин (1290—1349). Ему принадлежит трактат «О пропорциях» (1328 г.), который в истории науки оценивается как первая попытка написать «Математические начала натуральной философии» (именно так почти триста шестьдесят лет спустя назовет свой знаменитый труд Исаак Ньютон).




III.4. НАУЧНЫЕ РЕВОЛЮЦИИ ЭПОХИ НОВОГО ВРЕМЕНИ И СМЕНА ТИПОВ МИРОПОНИМАНИЯ


III.4.2. Первая научная революция.

Смена космологической картины мира


Первая научная революция произошла в эпоху, оставившую глубокий след в культурной истории человечества. Это был период конца XV—XVI в.в., ознаменовавший переход от средневековья к Новому времени и получивший название эпохи Возрождения. Последняя характеризовалась возрождением культурных ценностей античности (отсюда и название эпохи), расцветом искусства, утверждением идей гуманизма. Вместе с тем эпоха Возрождения отличалась существенным прогрессом науки и радикальным изменением миропонимания, которое явилось следствием появления гелиоцентрического учения великого польского астронома Николая Коперника (1473—1543).

В своем труде «Об обращениях небесных сфер» Коперник утверждал, что Земля не является центром мироздания и что «Солнце, как бы восседая на Царском престоле, управляет вращающимся около него семейством светил». Это был конец старой аристотелевско-птолемеевской геоцентрической системы мира. На основе большого числа астрономических наблюдений и расчетов Коперник создал новую, гелиоцентрическую систему мира, что явилось первой в истории человечества научной революцией.


III.4.3. Вторая научная революция.

Создание классической механики и

экспериментального естествознания.

Механистическая картина мира


Трагическая гибель Джордано Бруно произошла на рубеже двух эпох: эпохи Возрождения и эпохи Нового времени. В последней особую роль сыграл XVII век, ознаменовавшийся рождением современной науки, у истоков которой стояли такие выдающиеся ученые, как Галилей, Кеплер, Ньютон.

В учении Галилео Галилея (1564—1642) были заложены основы нового механистического естествознания.

Вторая научная революция завершалась творчеством одного из величайших ученых в истории человечества, каковым был Исаак Ньютон (1643—1727). Самым главным научным достижением Ньютона было продолжение и завершение дела Галилея по созданию классической механики. Благодаря их трудам ХУII век считается началом длительной эпохи торжества механики, господства механистических представлений о мире.

Ньютон сформулировал три основных закона движения, которые легли в основу механики как науки. Первый закон механики Ньютона—это принцип инерции, впервые сформулированный еще Галилеем: всякое тело сохраняет состояние покоя или равномерного и прямолинейного движения до тех пор, пока оно не будет вынуждено изменить его под действием каких-то сил. Существо второго закона механики Ньютона состоит в констатации того факта, что приобретаемое телом под действием какой-то силы ускорение прямо пропорционально этой действующей силе и обратно пропорционально массе тела. Наконец, третий закон механики Ньютона — это закон равенства действия и противодействия. Этот закон гласит, что действия двух тел друг на друга всегда равны по величине и направлены в противоположные стороны.


Данная система законов движения была дополнена открытым Ньютоном законом всемирного тяготения, согласно которому все тела, независимо от их свойств и от свойств среды, в которой они находятся, испытывают взаимное притяжение, прямо пропорциональное их массам и обратно пропорциональное квадрату расстояния между ними.

Пожалуй, ни одно из всех ранее сделанных научных открытий не оказало такого громадного влияния на дальнейшее развитие естествознания, как открытие закона всемирного тяготения. Огромное впечатление на ученых производил масштаб обобщения, впервые достигнутый естествознанием. Это был поистине универсальный закон природы, которому подчинялось все — малое и большое, земное и небесное. Этот закон явился основой создания небесной механики — науки, изучающей движение тел Солнечной системы.

Идеи Ньютона, опиравшиеся на математическую физику и эксперимент, определили направление развития естествознания на многие десятилетия вперед.

III.4.4. Естествознание Нового времени и проблема

философского метода


В истории изучения человеком природы сложились, как известно, два прямо противоположных, несовместимых метода этого изучения, которые приобрели статус общефилософских, т.е. носящих всеобщий характер. Это — диалектический и метафизический методы.

При метафизическом подходе объекты и явления окружающего мира рассматриваются изолированно друг от друга, без учета их взаимных связей и как бы в застывшем, фиксированном, неизменном состоянии. Диалектический подход, наоборот, предполагает изучение объектов, явлений со всем богатством их взаимосвязей, с учетом реальных процессов их изменения, развития.


III.4.5. Третья научная революция.

Диалектизация естествознания и очищение его от натурфилософских представлений.


Начало процессу стихийной диалектизации естественных наук, составившему суть третьей революции в естествознании, положила работа немецкого ученого и философа Иммануила Канта «Всеобщая естественная история и теория неба». Гипотезу Канта принято именовать небулярной, поскольку в ней утверждалось, что Солнце, планеты и их спутники возникли из некоторой первоначальной, бесформенной туманной массы, некогда равномерно заполнявшей мировое пространство. Кант пытался объяснить процесс возникновения Солнечной системы действием сил притяжения, которые присущи частицам материи, составлявшим эту огромную туманность. Под влиянием притяжения из этих частиц образовывались отдельные скопления, сгущения, становившиеся центрами притяжения. Из одного такого крупного центра притяжения образовалось Солнце, вокруг него располо­жились частицы в виде туманностей, которые начали двигаться по кругу. В круговых туманностях образовались зародыши планет, которые начали вращаться также вокруг своей оси. Солнце и планеты сначала разогрелись вследствие трения слагающих их частиц, затем начали остывать.


Хотя Кант в своей работе опирался на классическую механику XVII в., он сумел создать развивающуюся картину мира, которая не соответствовала философии Ньютона, враждебной эволюции. Идеи Канта о возникновении и развитии небесных тел были несомненным завоеванием науки середины XVIII века.

Более сорока лет спустя французский математик и астроном Пьер Симон Лаплас совершенно независимо от Канта и двигаясь своим путем, высказал идеи, развивавшие и дополнявшие кантовское космогоническое учение. В своем труде «Изложение системы мира» (1796) Лаплас предположил, что первоначально вокруг Солнца существовала газовая масса, нечто вроде атмосферы. Эта «атмосфера» была так велика, что простиралась за орбиты всех планет. Вся эта масса вращалась вместе с Солнцем (о причине вращения Лаплас не говорил). Затем, вследствие охлаждения, в плоскости солнечного экватора образовались газовые кольца, которые распались на несколько сфероидальных частей—зародышей будущих планет, вращающихся по направлению своего обращения вокруг Солнца. При дальнейшем охлаждении внутри каждой такой части образовалось ядро, и планеты перешли из газообразного в жидкое состояние, а затем начали затвердевать с поверхности.

Имена создателей двух рассмотренных гипотез были объединены, а сами гипотезы довольно долго (почти столетие) просуществовали в науке в обобщенном виде — как космогоническая гипотеза Канта-Лапласа.

В XIX веке диалектическая идея развития распространилась на широкие области естествознания, в первую очередь на геологию и биологию.

В первой половине XIX века происходила острая борьба двух концепций—катастрофизма (Жорж Кювье) и эволюционизма (Жан Батист Ламарк, Дарвин) которые по-разному объясняли историю нашей планеты. Уровень развития науки этого периода делал уже невозможным сочетать библейское учение о кратковременности истории Земли с накопленными данными о смене геологических формаций и смене фаун, ископаемые остатки которых находили в земных слоях. Это несоответствие некоторые ученые пытались объяснить идеей о катастрофах, которые время от времени случались на нашей планете.

Главный труд Дарвина «Происхождение видов» был опубликован в 1859 г. В нем Дарвин, опираясь на огромный естественнонаучный материал из области палеонтологии, эмбриологии, сравнительной анатомии, географии животных и растений, изложил факты и причины биологической эволюции. Он показал, что вне саморазвития органический мир не существует и поэтому органическая эволюция не может прекратиться.

Наряду с фундаментальными работами, раскрывающими процесс эволюции, развития природы, появились новые естественнонаучные открытия, подтверждавшие наличие всеобщих связей в природе.

К числу этих открытий относится клеточная теория, созданная в 30-х годах XIX века (Маттиас Якоб Шлейден, Теодор Шванн). Открытием клеточного строения растений и животных была доказана связь, единство всего органического мира.


Еще более широкомасштабное единство, взаимосвязь в материальном мире были продемонстрированы благодаря открытию закона сохранения и превращения энергии (Майер, Джоуль, Гельмгольц).

Еще одним поистине эпохальным событием в химической науке, внесшим большой вклад в процесс диалектизации естествознания, стало открытие периодического закона химических элементов. 1 марта 1869 г. выдающимся ученым-химиклм Дмитрием Ивановичем Менделеевым («Опыт системы элементов, основанный на их атомном весе и химическом сходстве»).

Из всего вышесказанного следует, что основополагающие принципы диалектики — принцип развития и принцип всеобщей взаимосвязи — получили во второй половине XVIII и особенно в XIX вв. мощное естественнонаучное обоснование.

Это означало крушение прежних метафизических представлений о мире и возвращение к диалектическому его пониманию, основы которого были заложены еще в античной натурфилософии.


III.5 ДИАЛЕКТИКО-МАТЕРИАЛИСТИЧЕСКАЯ КАРТИНА МИРА ВТОРОЙ ПОЛОВИНЫ XIX века


III.5.1. Формирование диалектико-

материалистической картины мира


Обычно принято считать, что диалектико-материалистическая картина мира создавалась преимущественно в 70-х – 80-х г.г. XIX в. Фридрихом Энгельсом. И это действительно так. Вместе с тем, некоторые основы этой картины мира начали закладываться значительно раньше, еще в середине XIX в. известным русским мыслителем А.И.Герценым. Он уделил большое внимание показу несостоятельности идеализма в понимании окружающего мира, делая это с точки зрения последовательного материализма.

Следующим этапом в формировании диалектико-материалистической картины мира стали работы Ф.Энгельса, написанные в 70-х – 80-х годах XIX века. К 70-м годам XIX столетия в условиях стихийно протекающего процесса диалектизации естественных наук возникла необходимость философского обобщения их достижений – с тем, чтобы придать материализму новую, диалектическую форму. Ибо с позиций только такого материализма можно было развить диалектико-материалистическое понимание природы.


III.5.3. От метафизико-механического – к диалектико-материалистическому пониманию движения.

Движение как способ существования материи

В естествознании и материалистической философии XYII-XYIII в.в. движение понималось лишь как перемещение тел в пространстве. Другими словами, все многообразие движения материи сводилось только к одной его разновидности – механической, которой придавалось универсальное значение. Методологической основой таких взглядов служил механистический подход к объяснению объектов и процессов материального мира.

В диалектико-материалистической картине мира движение рассматривается как важнейший атрибут (неотъемлемое свойство) материи, как способ ее существования. Ф.Энгельс создал концепцию о формах движения материи. Выделив эти формы и расположив их по степени сложности, Энгельс пришел к следующей классификации форм движения материи.