ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 06.11.2023

Просмотров: 31

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Билет 51

  1. Этапы реализации генетической информации. Транскрипция и посттранскрипционные процессы. Регуляция.

I. Транскрипция - синтез всех видов РНК на матрице ДНК. Транскрипция, или переписывание, происходит не на всей молекуле ДНК, а на участке, отвечающем за определенный белок (ген). Условия, необходимые для транскрипции:

а) раскручивание участка ДНК с помощью расплетающих белков- ферментов

б) наличие строительного материала в виде АТФ. ГТФ. УТФ. 1ДТФ

в) ферменты транскрипции - РНК-полимеразы I, II, III

г) энергия в виде АТФ.

Транскрипция происходит по принципу комплементарности. При этом с помощью специальных белков-ферментов участок двойной спирали ДНК раскручивается, является матрицей для синтеза иРНК. Далее вдоль цепи ДНК

движется фермент РНК-полимераза, соединяя между собой нуклеотиды по принципу комплементарности в растущую цепь РНК. Далее одноцепочечная РНК отделяется от ДНК и через поры в мембране ядра покидает клеточное ядро (рис. 5)



Рис. 5 Схематическое изображение транскрипции.

Различия в транскрипции про- и эукариот.

По химической организации наследственного материала эукариоты и прокариоты принципиально не отличаются. Известно, генетический материал представлен ДНК.

Наследственный материал прокариот содержится в кольцевой ДНК, которая располагается в цитоплазме клетки. Гены прокариот состоят целиком из кодирующих нуклеотидных последовательностей.

Гены эукариот содержат информативные участки -экзоны, которые несут информацию об аминокислотной последовательности белков, и неинформативные участки - интроны, не несущие информации.

Соответственно, транскрипция информационной РНК у эукариот проходит в 2 этапа:

S) переписываются (транскрибируются) все участки (интроны и экзоны) -такая иРНК принято называть незрелой или про-иРНК.

2). процессинг - созревание матричной РНК. С помощью специальных ферментов вырезаются интронные участки, затем сшиваются экзоны. Явление сшивания экзонов принято называть сплайсингом. Посттранскрипционное дозревание молекулы РНК происходит в ядре.


II. Трансляция (translation), или биосинтез белка. Суть трансляции -перевод четырехбуквенного шифра азотистых оснований на 20-буквенный ʼʼсловарьʼʼ аминокислот.

Процесс трансляции состоит в переносе закодированной в иРНК генетический информации в аминокислотную последовательность белка. Осуществляется биосинтез белка в цитоплазме на рибосомах и состоит из нескольких этапов:

1. Подготовительный этап (активация аминокислот), состоит в ферментативном связывании каждой аминокислоты с своей тРНК и образовании комплекса аминокислота - тРНК.

2. Собственно синтез белка, который включает три стадии:

а) инициация - иРНК связывается с малой субъединицей рибосомы, первыми кодонами, инициирующими, являются АУТ или ГУГ. Этим кодонам соответствует комплекс метионил -тРНК. Вместе с тем, в инициации участвует три белковых: фактора, облегчающие связывание мРНК с большой субчастицей рибосомы, образуется инициаторный комплекс

б) элонгация - удлинение полипептидной цепочки. Процесс осуществляется в 3 шага и состоит в связывании кодона мРНК с антикодоном тРНК по принципу комплементарности в активном центре рибосомы, затем в образовании пептидной связи между двумя остатками аминокислот и перемещении дипептида на шаг вперёд и, соответственно, передвижения рибосомы вдоль иРНК на один кодон вперед




в) терминация - окончание трансляции, зависит от присутствия в иРНК терминирующих кодонов или "стоп-сигналов" (УАА,УГА,УАГ) и белковых ферментов - факторов терминации (рис. 6).





Рис. 6. Схема трансляции

а) стадия элонгации;

б) поступления синтезированного белка в эндоплазматическую сеть

В клетке для синтеза белка используется не одна, а несколько рибосом. Такой работающий комплекс иРНК с несколькими рибосомами принято называть полирибосомой. В таком случае синтез белка происходит быстрее, чем при использовании только одной рибосомы.



Уже в ходе трансляции белок начинает укладываться в трёхмерную структуру, а при крайне важно сти в цитоплазме принимает четвертичную организацию.






Регуляция.

В клетках млекопитающих существуют два вида регуляции биосинтеза белков:

кратковременная, обеспечивающая адаптацию организма к изменениям окружающей среды;

длительная, стабильная, определяющая дифференцировку клеток и разный белковый состав органов и тканей.

Регуляция на уровне транскрипции (образование первичного транскрипта) – наиболее распространенный механизм регуляции синтеза белков.

Различают две формы регуляции – индукция синтеза (положительная регуляция) и репрессия синтеза (отрицательная регуляция).

Понятия индукции и репрессии предполагают изменение скорости синтеза белка по отношению к исходному (базальному) уровню. Синтез в базальном состоянии называют конститутивным синтезом.

Если скорость конститутивного синтеза белка высока, то белок регулируется по механизму репрессии синтеза, и, наоборот – при низкой базальной скорости бывает индукция синтеза.

В генетическом аппарате клетки существуют опероны – отрезки ДНК, содержащие структурные гены определенных белков (цистроны), и регуляторные участки.

Считывание генетического кода начинается с промотора, расположенного рядом с геном-оператором. Ген-оператор расположен на крайнем отрезке структурного гена. Он либо запрещает, либо разрешает репликацию мРНК на ДНК.

Деятельность оперона контролирует ген-регуляторБелок-репрессор осуществляет связь опероном и геном-регулятором. Репрессор образуется в рибосомах ядра на мРНК, синтезированной на гене-регуляторе. Он образует комплекс с геном-оператором и блокирует синтез мРНК, а, следовательно, и белка. Репрессор может связываться с низкомолекулярными веществами – индукторами, или эффекторами. После этого он теряет способность связываться с геном-оператором, ген-оператор выходит из-под контроля гена-регулятора, и начинается синтез мРНК. Это индукция синтеза (рис. 6).

Наблюдается также эффект репрессии ферментов, когда концентрация ферментов в клетках снижается при увеличении содержания конечных продуктов цепи реакций синтеза (рис. 7). В этом случае репрессор синтезируется в неактивной форме и приобретают способность подавлять деятельность гена-оператора после образования комплекса с продуктом синтеза (
корепрессором).

У эукариот преобладают положительные регуляторные механизмы. Основной регуляторной точкой является стадия инициации транскрипции. Регуляторные элементы, стимулирующие транскрипцию, называют энхансерами, а подавляющие ее – сайленсерами. Они могут избирательно соединяться с белками-регуляторами: энхансеры – с белками-индукторами, сайленсеры – с белками-репрессорами. Соединение регуляторных элементов с белками-регуляторами зависит от сигнальных молекул – гормонов, некоторых метаболитов и т.д.

  1. Пробанд – здоровый юноша, имеет здоровую сестру и больного гемофилией брата. Отец пробанда и его родители - здоровы. Мать пробанда здорова, имеет больного брата и здоровую сестру, которая вышла замуж за здорового мужчину, и у них родилась здоровая дочь и больной гемофилией сын. Бабушка и дедушка пробанда со стороны матери здоровы. Пробанд женился на здоровой девушке, у которой здоровые: сестра, родители и дядя со стороны отца. В семье пробанда родилась здоровая девочка. Определить вероятность рождения больного гемофилией мальчика в семье пробанда. Составьте и проанализируйте родословную.







3. В больницу скорой медицинской помощи доставлен больной с симптомами: сильная лихорадка, температура тела 40-410, сильная головная боль, боли во всем теле, тошнота, одышка, обильное потоотделение. При сборе анамнеза врач установил, что подобный приступ наблюдался два дня назад. Больной две недели назад вернулся из командировки в Узбекистан.

1. Какое заболевание можно предположить?

2. Какие анализы необходимо сделать для подтверждения диагноза?

3.Какие жизненные формы паразита могут быть обнаружены при лабораторной диагностике?

1) Малярия

2) Необходимо взять анализ крови

3) В крови могут быть обнаружены шизонты и гаметоциты малярийного плазмодия лентовидных спорозоитов.

Возбудители малярии относятся к типу Protozoa
, классу Sporosoa, семьи Plasmodiidae, рода Plasmodium. Известно четыре вида малярийного плазмодия, которые способны вызывать малярию у людей:

  • P. vivax - трехдневную малярию,

  • P. ovale - трехдневную овалемалярию,

  • P. malariae - четырехдневную малярию,

  • P. falciparum - тропической малярией.

Заболевание - малярия (встречается преимущественно в странах с субтропическим и тропическим климатом)
Возбудитель - относятся к отряду Haemosporidia роду Plasmodium.

Известно 4 вида:

1)Plasmodium vivax – возбудитель трехдневной малярии

2) Plasmodium ovale – возбудитель малярии типа трехдневной малярии

3)Plasmodium falciparum – возбудитель тропической малярии
4)Plasmodium malaria – возбудитель четырехдневной малярии.
Жизненный цикл – человек - промежуточный хозяин, а самки малярийных комаров – основной. Заражение человека происходит при укусе самкой комара Anopheles, maculipenis (Тип - Arthropoda; Подтип – Tragheata; Класс - Insecta) которая вместе со слюной вводит в кровь спорозоиты малярийного плазмодия. Током крови спорозоиты заносятся в клетки печени, селезенки, эндотелий кровеносных капилляров, где превращаются в тканевые шизонты, которые растут и через 5 – 16 дней проходит их множественное деление (шизогония) и образуются тканевые мерозоиты. Все эти стадии развития в организме человека называют тканевой (предэритроцитарной) шизогонией, соответствующей инкубационному периоду болезни.Тканевые мерозоиты разрушают клетки, поступают в кровь и внедряются в эритроциты. Начинается цикл эритроцитарной шизогонии. Мерозоит, проникший в эритроцит, называется эритроцитарным (кровяным) шизонтом. Через 2-3 часа после внедрения в центре шизонта образуется вакуоль, оттесняющая к периферии цитоплазму и ядро. Шизонт приобретает форму перстня и называется кольцевидным. Питаясь гемоглобином эритроцитов, шизонты растут, образуют псевдоподии и превращаются в амебовидные шизонты. Они продолжают питаться, расти, втягивают ложноножки, округляются, их ядро многократно делится (на 6-24 части) и вокруг ядер обособляются участки цитоплазмы. Такая стадия называется морулой. Образовавшиеся в результате эритроцитарной шизогонии клетки называются кровяными мерозоитами. Оболочка эритроцита разрушется и в плазму крови выходят мерозоиты и продукты их обмена. Этот процесс называется меруляцией. В это время у больного человека начинается приступ малярии. Часть кровяных мерозоитов вновь проникает в эритроциты и повторяет весь цикл эритроцитарной шизогонии. Продолжительность эритроцитарной шизогонии составляет 48-72 часа. Другая часть мерозоитов,