Файл: Программа, комплекс программ, программное средство, программное обеспечение, программный продукт. Концепция программного изделия непосредственная производительная сила,.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 07.11.2023

Просмотров: 262

Скачиваний: 3

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


перегруженные ветвлением диаграммы могут оказаться сложными для восприятия.

1.1.6 Указатели

Указатели — это специальные символы, которые ссылаются на другие разделы описания процесса. Они выносятся на диаграмму для привлечения внимания читателя к каким-либо важным аспектам модели.



1.1.7 Декомпозиция действий

Действия в IDEF3 могут быть декомпозированы, или разложены на составляющие, для более детального анализа. Декомпозировать действие можно несколько раз. Это позволяет документировать альтернативные потоки процесса в одной модели. Для корректной идентификации действий в модели с множественными декомпозициями схема нумерации действий расширяется и наряду с номерами действия и его родителя включает в себя порядковый номер декомпозиции. Например, в номере действия 1.2.5: 1 — номер родительского действия, 2 — номер декомпозиции, 5 — номер действия.


  1. Построение моделей IDEF3: диаграммы, нумерация блоков и диаграмм, сценарий, границы моделирования, определение действий и объектов.

1.2.1 Определение сценария, границ моделирования, точки зрения. Перед тем как попросить экспертов предметной области подготовить описание моделируемого процесса, должны быть документированы границы моделирования, чтобы экспертам была понятна необходимая глубина и полнота требуемого от них описания. Кроме того, если точка зрения аналитика на процесс отличается от обычной точки зрения для эксперта, это должно быть ясно и аккуратно описано. Вполне возможно, что эксперты не смогут сделать приемлемое описание без применения формального опроса автором модели. В таком случае автор должен заранее приготовить набор вопросов таким же образом, как журналист заранее подготавливает вопросы для интервью.

1.2.2 Определение действий и объектов

Результатом работы экспертов обычно является текстовый документ, описывающий интересующий аналитика круг вопросов. В дополнение к нему может иметься письменная документация, позволяющая пролить свет на природу изучаемого процесса. Вне зависимости от того, является ли информация текстовой или вербальной, она анализируется и разделяется частями речи для идентификации списка действий (глаголы и отглагольные существительные), составляющих процесс, и объектов (имена существительные), участвующих в процессе.

В некоторых случаях возможно создание графической модели процесса в присутствии экспертов. Такая модель также может быть разработана после сбора всей необходимой информации, что позволяет не отнимать время экспертов на детали форматирования получающихся диаграмм. Поскольку модели IDEF3 могут одновременно разрабатываться несколькими командами, IDEF3 поддерживает простую схему резервирования номеров действий в модели. Каждому аналитику выделяется уникальный диапазон номеров действий, что обеспечивает их независимость друг от друга.


1.2.3 Последовательность и параллельность

Если модель создается после проведения интервью, аналитик должен принять решения по построению иерархии участвующих в модели диаграмм, например, насколько подробно будет детализироваться каждая отдельно взятая диаграмма. Если последовательность или параллельность выполнения действий окончательно не ясна, эксперты могут быть опрошены вторично (возможно, с использованием черновых вариантов незаконченных диаграмм) для получения недостающей информации. Важно, однако, различать предполагаемую (появляющуюся из-за недостатка информации о связях) и явную (ясно указанную в описании эксперта) параллельности.

Итак, IDEF3 — это способ описания бизнес-процессов, который нужен для описания положения вещей как упорядоченной последовательности событий с одновременным описанием объектов, имеющих непосредственное отношение к процессу. IDEF3 хорошо приспособлен для сбора данных, требующихся для проведения структурного анализа системы. Кроме того, IDEF3 применяется при проведении стоимостного анализа поведения моделируемой системы.


  1. Метод структурного анализа потоков данных: назначение диаграмм потоков данных (DFD); синтаксис и семантика DFD: функциональные блоки (системы и подсистемы, процессы), внешние сущности, потоки данных, хранилища данных, ветвление и объединение потоков данных.

Диаграммы потоков данных (Data Flow Diagrams DFD) представляют собой иерархию функциональных процессов, связанных потоками данных. Цель такого представления — продемонстрировать, как каждый процесс преобразует свои входные данные в выходные, а также выявить отношения между этими процессами.

Так же, как и диафаммы IDEFO, диаграммы потоков данных моделируют систему как набор действий, соединенных друг с другом стрелками. Диаграммы потоков данных также могут содержать два новых типа объектов: объекты, собирающие и хранящие инфор­мацию — хранилища данных и внешние сущности — объекты, которые моделируют взаимодействие с теми частями системы (или другими системами), которые выходят за границы моделирования. В отличие от стрелок в IDEFO, которые иллюстрируют отношения, стрелки в DFD показывают, как объекты (включая и данные) реально перемещаются от одного действия к другому. Это представление потока вкупе с хранилищами данных и внешними сущностями обеспечивает отражение в DFD-моделях таких физических характеристик системы, как двиэюение объектов (потоки дт^ых), хранение объектов (хранилища данных), источники и потребители объектов (внешние сущности). Построение DFD-диаграмм в основном ассоциируется с разработ­кой программного обеспечения, поскольку нотация DFD изначально была разработана для этих целей. В частности, графическое изображение объектов на DFD-диаграммах этой главы соответствует принятому Крисом Гейном (Chris Gane) и Тришем Сарсоном (Trish Sarson), авторами DFD-метода, известного как метод Гейна — Сарсона. Другой распространенной нотацией DFD является так называемый метод Йордана — Де Марко (Yourdon — DeMarco).



3.2 Синтаксис и семантика диаграмм потоков данных

В отличие от IDEFO, рассматривающего систему как множество взаимопересекающихся действий, в названиях объектов DFD-диарамм преобладают имена существительные. Контекстная DFD-диаграмма часто состоит из одного функционального блока и нескольких внешних сущностей. Функциональный блок на этой диаграмме обычно имеет имя, совпадающее с именем всей системы (рис. 3.2). Добавление на диаграмму внешних ссылок не изменяет фундаментального требования, что модель должна строиться с единственной точки зрения и должна иметь четко определенные цель и границы,что уже обсуждалось ранее.

3.2.1 Функциональные блоки

Функциональный блок DFD моделирует некоторую функцию, которая преобразует какое-либо сырье в какую-либо продукцию (или, в терминах IDEF, вход в выход). Хотя функциональные блоки DFD и изображаются в виде прямоугольников с закругленными углами, они почти идентичны функциональным блокам IDEFO и действиям IDEF3. Как и действия IDEF3, функциональные блоки DFD имеют входы и выходы, но не имеют управления и механизма исполнения как IDEFO. В некоторых интерпретациях нотации DFD Гейна — Сарсона механизмы исполнения IDEFO моделируются как ресурсы и изображаются в нижней части прямоугольника (рис. 3.3).



3.2.2 Внешние сущности

Внешние сущности обеспечивают необходимые входы для системы и/или являются приемниками для ее выходов. Одна внешняя сущность может одновременно предоставлять входы (функционируя как поставщик) и принимать выходы (функционируя как получатель). Внешние сущности изображаются как прямоугольники (рис. 3.4) и обычно размещаются у краев диаграммы. Одна внешняя сущность может быть размещена на одной и той же диаграмме в нескольких экземплярах. Этот прием полезно применять для сокращения количества линий, соединяющих объекты на диаграмме.



3.2.3 Стрелки (потоки данных) Стрелки описывают передвижение (поток) объектов от одной час­ти системы к другой. Поскольку все стороны обозначающего функциональный блок DFD прямоугольника равнозначны (в отличие от IDEFO), стрелки могут начинаться и заканчиваться в любой части бло­ка. В DFD также используются двунаправленные стрелки, которые нужны для отображения взаимодействия между блоками (например, диалога типа приказ — результат выполнения). На рис. 3.5 двунаправ­ленная стрелка обозначает взаимный обмен информацией между департаментами маркетинга и рекламы и пластиковых карт.


3.2.4 Хранилища данных

В то время как потоки данных представляют объекты в процессе их передвижения, хранилища данных моделируют их во всех остальных состояниях. При моделировании производственных систем хранилищами данных служат места временного складирования, где хранится продукция на промежуточных стадиях обработки. В информационных системах хранилища данных представляют любой механизм, который поддерживает хранение данных для их промежуточ­

ной обработки.


3.2.5 Ветвление и объединение

Стрелки на DFD-диаграммах могут быть разбиты (разветвлены) на части, и при этом каждый получившийся сегмент может быть переименован таким образом, чтобы показать декомпозицию данных, переносимых данным потоком (рис. 3.7).

Стрелки могут и соединяться между собой (объединяться) для формирования так называемых комплексных объектов.


  1. Построение диаграмм потоков данных: нумерация объектов, построение контекстных диаграмм, правила детализации – балансировка, нумерация; спецификация процесса, требования, предъявляемые к спецификации, структурированный естественный язык описания спецификации процессов, верификация модели DFD – проверка на полноту и согласованность.

3.3.2 Нумерация объектов

В DFD каждый номер функционального блока может включать в себя префикс, номер родительской диаграммы и собственно номер объекта (рис. 3.9). Номер объекта уникальным образом идентифицирует функциональный блок на диаграмме. Номер родительской диаграммы и номер объекта в совокупности обеспечивают уникальную идентификацию каждого блока модели.

Уникальные номера присваиваются также каждому хранилищу данных и каждой внешней сущности вне зависимости от расположения объекта на диаграмме. Каждый номер хранилища данных содержит префикс D (от английского Data Store) и уникальный номер хранилища в модели (например, D3).



Аналогично каждый номер каждой внешней сущности содержит префикс Е (от английского External entity) и уникальный номер сущности в модели (например, Е5).

Итак, диаграммы потоков данных (DFD) обеспечивают удобный способ описания передаваемой информации как между частями моделируемой системы, так и между системой и внешним миром. Это качество определяет область применения DFD — они используются для создания моделей информационного обмена организации, например модели документооборота. Кроме того, различные вариации DFD широко применяются при построении корпоративных информационных


систем.
Главн цель постр-ия иерархии DFD заключ-ся в том, чтобы сделать опис-ие системы ясным и понятным на кажд уровне детализ-и, а также разбить его на части с точно определенными отношениями между ними. Для достижения этого целесообразно пользоваться следующими рекомендациями:

• размещать на каждой диаграмме от 3 до 6—7 процессов (аналогично SADT). Верхняя граница соответствует человеческим возможностям одновременного восприятия и понимания структуры сложной системы с множеством внутренних связей, нижняя граница выбрана по соображениям здравого смысла: нет необходимости детализировать процесс диаграммой, содержащей всего один или два процесса;

• не загромождать диаграммы несущественными на данном уровне деталями;

• декомпозицию потоков данных осуществлять параллельно с декомпозицией процессов. Эти две работы должны выполняться одновременно, а не одна после завершения другой;

• выбирать ясн, отражающие суть дела, имена процессов и потоков, при этом стараться не исп аббревиатуры.

Первый шаг - построение контекстных диаграмм. Обычно при проектировании относительно прост систем строится единств-ая контектная диаграмма со звездообразной топологией, в центре которой находится так называемый главный процесс, соединенный с приемниками и источниками информации, посредством которых с системой взаимодействуют пользователи и другие внешние системы. Перед построением контекстной DFD необходимо проанализировать внешние события (внешние сущности), оказывающие влияние на функционирование системы. Количество потоков на контекстной диаграмме должно быть по возможности небольшим, поскольку каждый из них может быть в дальнейшем разбит на несколько потоков на след уровнях диаграммы. Для сложн систем строится иерархия контекстн диаграмм. При этом контекстная диаграмма верхнего уровня содержит не единственный главный процесс, а набор подсистем, соединенных потоками данных. Контекстн диаграммы след ур-ня детализируют контекст и структуру подсистем.

Для каждой подсистемы, присутствующей на контекстных диаграммах, выполняется ее детализация при помощи DFD. Это можно сделать путем построения диаграммы для каждого события. Кажд событие представл-ся в виде процесса с соответств-ми входн и выходн потоками, накопителями данных, внешн сущностями и ссылками на друг процессы для описания связей между этим процессом и его окружением. Затем все построенные диагр-мы сводятся в одну диаграмму нулевого ур-ня. Кажд процесс на DFD, в свою очередь, может быть детализирован при помощи DFD или (если процесс элементарный) спец-ии. При детализ-ии должны выполняться след правила: