Файл: Правила по технике безопасности.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 07.11.2023

Просмотров: 71

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
с1,c2,… процесс парообразования завершается и данные точки образуют верхнюю пограничную кривую, соответствующую сухому насыщенному пару (х = 1). Точки d1, d2,… (рис. 1) и f1, f2,… (рис. 2) соответствуют состоянию перегретого пара, а точка а – жидкости. Степень сухости:

х =  ,

где  масса сухого насыщенного пара;

 масса влажного насыщенного пара;

 масса кипящей жидкости.

Н
Ψ1=pн(v”- v’)
а участках b1c1, b2c2,…, где происходит переход жидкости в пар, в равновесии находятся системы, состоящие из двух фаз (двух агрегатных состояний) – жидкой и парообразной, причем температура и давление этих фаз одинаковы. Участки b1c1, b2c2,… на обеих диаграммах являются одновременно изобарой и изотермой, т.е. переход жидкости в пар совершается при рн = const, tн = const.

Таким образом, на обеих диаграммах можно выделить три характерные области состояний:

  • область жидкого состояния – расположена левее кривой кипящей жидкости х = 0,t < tн;

  • область влажного насыщенного пара – двухфазное состояние, где пар и жидкость находятся в равновесии и имеют одинаковые рн и tн. Эта область расположена между пограничными кривыми х = 0 и х = 1, т.е. в этой области 0 < x < 1;

  • область перегретого пара – расположена правее кривой сухого насыщенного пара, х = 1 ,t>tнпри данном давлении.

Переход вещества из одной фазы в другую называется фазовым переходом. Вещества, находящиеся в разных агрегатных состояниях, имеют различные физические свойства. Это различие объясняется характером межмолекулярного взаимодействия.

Количество теплоты, которое необходимо подвести к 1 кг жидкости для перехода её в пар в изобарно-изотермическом (
рн и tн const) процессе называется теплотой парообразования r, кДж/кг. Она расходуется на работу расширения и на преодоление сил межмолекулярного взаимодействия :

, (1)

где  внешняя составляющая теплоты парообразования, она рассчитывается как

, (2)

где и  удельные объемы кипящей жидкости и сухого насыщенного пара соответственно;

 внутренняя составляющая теплоты парообразования.

На pv-диаграмме (рис. 1), как следует из уравнения (2), величина показана заштрихованной площадкой. На Ts-диаграмме (рис.2) заштрихованной площадкой показана величина теплоты парообразования, которая может быть рассчитана как:

, (3)

где и  энтропия кипящей жидкости и сухого насыщенного пара соответственно, ;

Тн  температура насыщения, К.

Из pv- и Тs-диаграмм видно, что с увеличением давления р точки b1, b2,… на нижней пограничной кривой сближаются с точками с1, с2, …на верхней пограничной кривой и в критической точке они сходятся. Так, для воды критические параметры в точке К имеют следующие значения: ркр. = 22,13 МПа, tкр. = 374,2 С, vкр. = 0,00326 м3/кг.

Выше критической точки К при p > pкр. и Т > Ткр. двухфазного состояния не наблюдается. Жидкая фаза находится под весьма большим внутренним давлением. Фактором, определяющим интенсивность межмолекулярных взаимодействий, является не давление, а температура. С ростом температуры и давления теплота парообразования

r уменьшается, а в критической точке r = 0, и , т.к. в этом состоянии исчезает различие между жидкостью и ее паром и процесс парообразования отсутствует.

О
Δp
пытным путем было установлено, что каждому давлению р соответствует определенная температура насыщения tнас. (кипения) данной жидкости, являющаяся одновременно температурой насыщения пара, с которым жидкость находится в равновесии. Кривая зависимости называется кривой насыщения, рис. 3.

С
t*н tн
Рис.3. Кривая насыщения

Δt


вязь между температурой и давлением насыщения выражается уравнением Клапейрона-Клаузиуса.

, (4)

где ,  удельные объемы соответственно жидкости и сухого насыщенного пара на линии насыщения при Тнас. и рнас., м3/кг.

Поскольку  >  , из уравнения (4) следует, что при фазовом переходе «жидкость-пар» производная всегда больше нуля, т.е. с ростом давления температура насыщения увеличивается.

Уравнение Клапейрона-Клаузиуса (4) имеет важные достоинства. Во-первых, оно устанавливает связь между калорическими и термодинамическими (р, v, Т) параметрами. Во-вторых, дает связь между параметрами жидкого ( , ) и парообразного ( , ) состояний.

Первое из этих достоинств уравнения (4) в данной работе используется для определения теплоты парообразования r по кривой насыщения, полученной по результатам измерения термодинамических параметров рн и tн.


Проведение опытов
Э
Рис.4. Схема экспериментальной установки:

1 – сосуд высокого давления; 2 – спираль электронагревателя; 3 – переключатель электронагревателя; 4 – вентилятор; 5 – переключатель вентилятора; 6 – кожух; 7 – образцовый манометр; 8 – контактный манометр, автоматически отключающий нагреватель по достижении давления 216 бар (55 дел.); 9 – милливольтметр; 10 – дифференциальная термопара.

tнас

tокр

220 B

220 B

3

x

1-x
кспериментальная установка, рис. 4, представляет собой замкнутый сосуд высокого давления, содержащий такое количество воды, при котором удельный объем vx двухфазной системы «жидкость-пар» (влажного насыщенного пара) равен критическому значению в точке К:

, м3/кг, (5)

где V  внутренний объем сосуда, м3;

т  масса системы «жидкость-пар», кг;

vкр  удельный объем системы в критической точке, м3/кг.

При изохорном (= vxconst) электрическом нагревании система «жидкость-пар» проходит ряд равновесных двухфазных состояний до критической точки К (на рис. 1 и 2 процесс изображен пунктирными линиями). В опыте измеряются избыточные давления манометром 7. Соответствующие температуры насыщения tн устанавливаются по измеренным значениям э.д.с. дифференциальных термопар.
Порядок работ следующий:

  1. Установка включается преподавателем;

  2. Измерения начинать по достижении показания манометра 5 делений и далее через каждые 5 делений. Одновременно с показаниями манометра в таблицу 1 записывать показания э.д.с. термопары е, мВ, измеряемые милливольтметром 9.

  3. По достижении показаний манометра 50 делений показать результаты преподавателю.

  4. Определить температуру окружающей среды tокр и атмосферное давление В. Заполнить таблицу 1.

  5. С разрешения преподавателя установку можно отключить.


Таблица 1

ризб.

рн, МПа

е, мВ

, С

tокр, С

tн, С

В,
мм рт. ст.

делений

кгс/см2

5






















10
















15













, С




Дата и подпись преподавателя:

20
















25
















30
















35
















40



















45
















50

















 задается преподавателем каждому студенту индивидуально.
Обработка опытных данных


  1. Рассчитать абсолютное давление насыщенного пара для всех точек:

, Па;

1 кгс/см2 = 735,6 мм рт. ст.;

750 мм рт. ст = 105 Па = 0,1 МПа.

  1. По величинам е из градуировочного графика определить значения , где .Искомая температура насыщения , С.

Результаты занести в таблицу 1.

  1. На миллиметровой бумаге по опытным данным рн и tн построить кривую насыщения (рис. 3), выбрав масштабы по осям

= 1МПа   1 см;

= 10 С  1 см.

  1. С помощью уравнения (4) рассчитать теплоту парообразования r при заданной температуре :

, кДж/кг.

Значение производной определить графически как тангенс угла наклона касательной к кривой насыщения в точке с температурой (геометрический смысл первой производной!) (рис. 3), т.е. с учетом размерностей:

, Па/град.

Точность теплоты парообразования