ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 04.09.2021
Просмотров: 994
Скачиваний: 2
Аминосахара входят в состав мукополисахаридов животного, растительного и бактериального происхождения, являются углеводными компонентами различных гликопротеинов и гликолипидов. В составе этих высокомолекулярных соединений аминогруппа аминосахара чаще всего аци-лирована, а иногда сульфирована.
16.3. Дисахариды
Строение. Дисахариды состоят из двух моносахаридных остатков, связанных гликозидной связью. Возможно два варианта образования гликозидной связи:
1) за счет полуацетального гидроксила одного моносахарида и спиртового гидроксила другого моносахарида;
2) за счет полуацетального гидроксилов обоих моносахаридов.
Дисахарид, образованный первым способом, содержит свободный гликозидный гидроксил, сохраняет способность к цикло-оксо-таутомерии и обладает восстанавливающими свойствами.
В дисахариде, образованном вторым способом, нет свободного гликозидного гидроксила. Такой дисахарид не способен к цикло-оксо-таутомерии и является невосстанавливающим. В природе в свободном виде встречается незначительное число дисахаридов. Важнейшими из них являются мальтоза, целлобиоза, лактоза и сахароза.
Мальтоза содержится в солоде и образуется при неполном гидролизе крахмала. Молекула мальтозы состоит из двух остатков α-D-глюкопиранозы. Гликозидная связь между ними образована за счет полуацетального гидроксила в ά-конфигурации одного моносахарида и гидроксильной группы в положении 4 другого моносахарида.
Мальтоза – это восстанавливающий дисахарид.
Целлобиоза – продукт неполного гидролиза целлюлозы, клетчатки. Молекула целлобиозы состоит из двух остатков β-D-глюкопиранозы, связанных β-1,4-гликозидной связью. Целлобиоза – восстанавливающий дисахарид.
Лактоза содержится в молоке (4-5%). Молекула лактозы состоит из остатков βD-галактопиранозы и α-D-глюкопиранозы, связанных β-1,4-гликозидной связью. Лактоза – восстанавливающий дисахарид.
Сахароза содержится в сахарном тростнике, сахарной свекле, соках растений и плодах. Она состоит из остатков α-D-глюкопиранозы и β-D-фруктофуранозы, которые связаны за счет полуацетальных гидроксилов. Сахароза – невосстанавливающий дисахарид.
16.4. Полисахариды
Полисахариды – полимеры, построенные из моносахаридных остатков, связанных гликозидными связями. Полисахариды могут иметь линейное или разветвленное строение. Полисахариды, состоящие их одинаковых моносахаридных остатков, называют гомополисахаридами, из остатков разных моносахаридов – гетерополисахаридами.
К гомополисахаридам относят:
Крахмал – полисахарид растительного происхождения. Крахмал представляет собой смесь двух полисахаридов – амилозы (10-20%) и амилопектина (80-90%) Крахмал набухает и растворяется в воде, образуя вязкие растворы (гели). Химические свойства крахмала аналогичны свойствам моно- и дисахаридов. Крахмал гидролизуется под действием кислот (но не щелочей) и фермента амилазы. Конечным продуктом гидролиза крахмала является D-глюкоза.
(C6H10O5)n ---> (C6H10O5)m ---> C12H22O11 ---> C6H12O6
крахмал декстрины мальтоза D-глюкоза n>m
За счет спиралеобразной конформации амилоза способна образовывать соединения включения с молекулярным иодом. Комплексы крахмала с иодом имеют интенсивную синюю окраску. Реакция используется как качественная на иод и крахмал.
Амилоза – линейный гомополисахарид, состоящий из остатков D-глюкопиранозы, связанных ά-1,4-гликозидными связями. Структурным элементом амилозы является дисахарид мальтоза.
Амилопектин – разветвленный гомополисахарид, построенный из остатков D-глюкопиранозы, которые связаны в основной цепи ά-1,4-гликозидными, а в местах разветвлений - ά-1,6-гликозидными связями. Разветвления расположены через каждые 20-25 моносахаридных остатков.
Гликоген. В животных организмах этот полисахарид является структурным и функциональным аналогом растительного крахмала. По строению подобен амилопектину, но имеет еще большее разветвление цепей. Обычно между точками разветвления содержатся 10-12 глюкозных звеньев, иногда даже 6, условно можно сказать, что разветвленность макромолекулы гликогена вдвое больше, чем амилопектина. Сильное разветвление способствует выполнению гликогеном энергетической функции так как только при наличии большого числа концевых остатков можно обеспечить быстрое отщепление нужного количества глюкозы. Молекулярная масса гликогена необычайно велика, измерения у гликогена, выделенного с предосторожностями во избежание расщепления макромолекулы, показали, что она равна 100 млн. Такой размер макромолекул содействует выполнению функции резервного углевода. Так, макромолекула гликогена из-за большою размера не проходит через мембрану и остается внутри клетки, пока не возникнет потребность в энергии. Гидролиз гликогена в кислой среде протекает очень легко с количественным выходом глюкозы. Это используется в анализе тканей на содержание гликогена: горячей щелочью из тканей извлекают гликоген, осаждают его спиртом, гидролизуют в кислой среде и определяют количество образовавшейся глюкозы. Аналогично гликогену в животных организмах, в растениях такую же роль резервного полисахарида выполняет амилопектин имеющий менее разветвленное строение, это связано с тем, что в растениях значительно медленнее протекают метаболические процессы и не требуется быстрый приток энергии, как это иногда бывает необходимо животному организму (стрессовые ситуации, физическое или умственное напряжение).
Целлюлоза – самый распространенный растительный полисахарид. Выполняет функцию опорного материала растений. Структурным элементом целлюлозы является целлобиоза.
Древесина содержит 50—70% целлюлозы; хлопок представляет собой почти чистую целлюлозу. Целлюлоза является важным сырьем для ряда отраслей промышленности (целлюлозно-бумажной, текстильной и т. п.). Целлюлоза построена и остатков D—глюкопиранозы, звенья которой связаны бета-(1-4)-гликозидными связями. Макромолекулярная цепь не имеет разветвлений, в ней содержится 2500—12 000 глюкозных остатков, что соответствует молекулярной массе от 400 000 до 1—2 млн. Бета-конфигурация аномерного атома углерода приводит к тому, что макромолекула целлюлозы имеет строго линейное строение. Этому способствует образование водородных связей внутри цепи, а также между соседними целями. Такая упаковка цепей обеспечивает высокую механическую прочность, волокнистость, нерастворимость в воде и химическую инертность, что делает целлюлозу прекрасным материалом для построения клеточных стенок растений. Целлюлоза не расщепляется обычными ферментами желудочно-кишечного тракта, но она является необходимым для нормального питания балластным веществом. Большое практическое значение имеют эфирные производные целлюлозы: ацетаты (искусственный шелк), ксантогенаты (вискозное волокно, целлофан), нитраты (взрывчатые вещества, коллоксилин) и др.
Декстраны – полисахариды бактериального происхождения, построенные из остатков ά-D-глюкопиранозы. Молекулы декстранов сильно разветвлены. Декстраны используют как заменители плазмы крови, однако большая молекулярная масса природных декстранов (несколько миллионов) делает их непригодными для приготовления инъекционных растворов вследствие плохой растворимости. В связи с этим молекулярную массу снижают до 50—100 тыс. с помощью кислотного гидролиза или ультразвука и получают клинические декстраны, например препарат полиглюкин. Декстраны обладают антигенными свойствами. Можно отметить, что декстраны, синтезируемые обитающими на поверхности зубов бактериями, являются компонентами налета на зубах.
Хитин – основной полисахарид роговых оболочек насекомых и ракообразных, встречается в грибах. Хитин - неразветвленный полисахарид, построенный их остатков N-ацетил-D-глюкозамина, связанных β-1,4-гликозидными связями.
Пектиновые вещества содержатся в ягодах, фруктах и овощах, способствуют желеобразованию Основной компонент пектиновых веществ – пектовая кислота – линейный полисахарид, построенный их остатков D-галактуроновой кислоты, связанных ά-1,4-гликозидными связями.
Инулин. Этот полисахарид обычно накапливается в клубнях, а также содержится в водорослях. Гомополисахарид инулин состоит из остатков D-фруктопиранозы, связанных β-(2-1)-связями.
Гетерополисахариды имеют в основном животное или бактериальное происхождение. Важное значение имеют гетерополисахариды, входящие в состав соединительной ткани. Полисахариды соединительной ткани находятся в виде углевод-белковых комплексов - протеогликанов. Наиболее важные из них: хондроитинсульфаты (кожа, хрящи, сухожилия), гиалуроновая кислота (хрящи, стекловидное тело глаза, суставная жидкость), гепарин (печень, кровеносные сосуды). Для этих полисахаридов характерны общие черты в строении. Они имеют неразветвленную структуру и содержат гликуроновые кислоты и ацетилированные аминосахара. Например, гиалуроновая кислота состоит из дисахаридных фрагментов, включающих D-глюкуроновую кислоту и N-ацетил-D-глюкозамин, которые связан внутри биозного фрагмента β-1,3-гликозидной связью, между биозными фрагментами - β-1,4-гликозидной связью.
Как свидетельствует само их название, хондроитинсульфаты являются эфирами серной кислоты (сульфатами). Сульфатная группа образует эфирную связь с гидроксильной группой N-ацетил-D-галактозамина, находящейся либо в 4-м, либо в 6-м положении. Соответственно различают хондроитин-4-сульфат и хондроитин-6-сульфат.
Гепарин. В гепарине в состав повторяющихся дисахаридных единиц входят остатки D-глюкозамина и двух уроновых кислот — D-глюкуроновой и L-идуроновой. В количественном отношении преобладает L-идуроновая кислота. Внутри дисахаридного фрагмента осуществляется ά-(1-4)-гликозидная связь, а между дисахаридными фрагментами — ά-(1-4)-связь, если фрагмент оканчивается L-идуроновой кислотой, и β-(1-4)-связь, если D-глюкуроновой кислотой. Аминогруппа у большинства глюкозаминных остатков сульфатирована, а у некоторых из них — ацетатирована. Кроме того, сульфатные группы содержатся у ряда L-идуроновых кислот при С-2, а также глюкозаминных остатков при С-6. Остатки D-глюкуроновой кислоты не сульфатированы.
Гепарин и гепаритинсульфат, подобно хондроитинсульфату, соединяются с белком через тетрасахаридный фрагмент, концевым звеном которого является D-ксилоза. Гепарин препятствует свертыванию крови, т. е. проявляет антикоагулянтные свойства.
17. Гетероциклические соединения
Гетероциклические соединения — это органические соединения, содержащие в своих молекулах кольца (циклы), в образовании которых кроме атома углерода принимают участие и атомы других элементов.
Атомы других элементов, входящие в состав гетероцикла, называются гетероатомами. Наиболее часто встречаются в составе гетероциклов гетероатомы азота, кислорода, серы, хотя могут существовать гетероциклические соединения с самыми различными элементами, имеющими валентность не менее двух.
Гетероциклические соединения могут иметь в цикле 3, 4, 5, 6 и более атомов. Однако наибольшее значение имеют пяти- и шестичленные гетероциклы. Эти циклы, как и в ряду карбоциклических соединений, образуются наиболее легко и отличаются наибольшей прочностью. В гетероцикле может содержаться один, два и более гетероатомов.
Гетероциклы – самый многочисленный класс органических соединений, включающий около 2/3 всех известных природных и синтетических органических веществ. Гетероциклическую природу имеют многие алкалоиды, витамины, природные пигменты. Гетероциклы являются структурными фрагментами молекул нуклеиновых кислот и белков. Более 60% наиболее известных и широко употребляемых лекарственных препаратов являются гетероциклическими соединениями.
Гетероциклы классифицируют по следующим основным признакам:
по природе и числу гетероатомов; по размеру цикла; по степени ненасыщенности.
Наибольшее распространение в природе имеют пяти- и шестичленные гетероциклы, содержащие в качестве гетероатомов азот, а также кислород и серу.
По степени ненасыщенности различают насыщенные, ненасыщенные и ароматические гетероциклы. Гетероциклы неароматического характера по своим свойствам сходны с соответствующими ациклическими соединениями (аминами, амидами, простыми и сложными эфирами и т.д.). 5- и 6-членные гетероциклы, замкнутая сопряженная система которых включает (4n + 2) электрона, обладают ароматическим характером. Такие соединения по свойствам родственны бензолу и относятся к ароматическим гетероциклическим соединениям. Именно ароматические гетероциклические соединения широко распространены в природе. Для гетероциклов обычно пользуются эмпирическими названиями.
17.1. Пятичленные гетероциклические соединения c одним гетероатомом
К пятичленным гетероциклам с одним гетероатомом относят пиррол, фуран, тиофен.
Фуран - пятичленный гетероцикл с одним атомом кислорода:
Производное фурана 5-нитрофурфурол является родоначальником лекарственных средств - фурадонин, фуросемид, фуразолидон.
5-нитрофурфурол
Фурадонин - противомикробное средство. Эффективен при заболеваниях мочевых путей. Способен задерживать развитие микроорганизмов, устойчивых к сульфаниламидам и антибиотикам. Фуросемид- диуретическое средство. Фуросемид применяют при сердечно-сосудистых заболеваниях, циррозе печени, отеках легких и мозга, болезнях почек. Фуразолидон - лекарственное средство с выраженным противомикробным действием.
Тиофен обладает выраженными ароматическими свойствами. В реакциях электрофильного замещения (галогенирование, нитрование и др.) тиофен значительно активнее бензола.
Тиофен содержится в ихтиоловой мази. Производные тиофена – норсульфазол, витамин В1, биотин (витамин Н) – регулирует обмен веществ.
биотин
Пиррол - пятичленный гетероцикл с одним атомом азота.
Пиррол — бесцветная жидкость с запахом, напоминающим запах хлороформа. Пиррол слабо растворим в воде (< 6%), но растворим в органических растворителях. На воздухе быстро окисляется и темнеет.
Тетрапиррольные соединения содержат ароматический макроцикл порфин, включающий четыре пиррольных кольца.
Замещенные порфины называют порфиринами. В виде комплексов с металлами порфирины и частично гидрированные порфирины входят в состав важных природных соединений – гема (простетической группы гемоглобина – содержащегося в эритроцитах основного белка дыхательного цикла, переносчика кислорода от органов дыхания к тканям), зеленого пигмента растений хлорофилла, витамина В12.
Индол – ароматическое гетероциклическое соединение, содержащее конденсированные бензольный и пиррольный циклы.
Цикл индола входит в триптофан, который является незаменимой (не синтезируется в организме человека) α-аминокислотой, входящей в состав животных и растительных белков.
Серотонин – биогенный амин, продукт метаболизма триптофана. Обладает высокой биологической активностью, является нейромедиатором головного мозга.
Триптамин – токсичный биогенный амин, продукт декарбоксилирования триптофана.
Индольные алкалоиды. Алкалоиды – гетероциклические азотсодержащие основания растительного происхождения, обладающие ярко выраженным физиологическим действием. Индольное кольцо входит в состав многих алкалоидов – резерпина (содержится в растениях рода раувольфия; используется как успокаивающее и понижающее кровяное давление средство), стрихнина (содержится в семенах растения чилибухи; используется как тонизирующее средство), лизергиновой кислоты (алкалоид спорыньи; диэтиламид лизергиновой кислоты - ЛСД - сильное галлюциногенное средство).
17.2. Пятичленные гетероциклы с двумя гетероатомами
Имидазол и пиразол – пятичленные ароматические гетероциклы, содержащие два атома азота.
Имидазол входит в состав гистидина, являющегося α-аминокислотой, входящей в состав многих белков, в том числе гемоглобина; в составе ферментов осуществляет кислотный и основной катализ за счет амфотерных свойств имидазольного цикла.