ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 04.09.2021
Просмотров: 996
Скачиваний: 2
3) для производства нитроглицерина.
13. Альдегиды, кетоны
Органические соединения, в молекуле которых имеется карбонильная группа >С=O, называются карбонильными соединениями, или оксосоединениями. Карбонильные соединения делятся на две большие группы — альдегиды и кетоны.
Альдегиды содержат в молекуле карбонильную группу, связанную с атомом водорода, т. е. альдегидную группу — СН=O. Кетоны содержат карбонильную группу, связанную с двумя углеводородными радикалами, т. е. кетонную группу .
В зависимости от строения углеводородных радикалов альдегиды и кетоны бывают алифатическими, алициклическими и ароматическими.
Изомерия альдегидов связана только со строением радикалов. Изомерия кетонов связана со строением радикалов и с положением карбонильной группы в углеродной цепи.
Номенклатура. Для альдегидов часто используют тривиальные названия, соответствующие названиям кислот (с тем же числом углеродных атомов), в которые альдегиды переходят при окислении. При составлении названия альдегида указывается название соответствующего углеводорода, к которому добавляется суффикс «аль», например, метаналь Н2С=О, этаналь Н3СС(Н)=О, пропаналь Н3ССН2С(Н)=О.
CH3-CHO - ацетальдегид - этаналь
CH3-CH2-CHO - пропиональдегид - пропаналь
CH3-CH2-CH2-CHO - бутиральдегид - бутаналь
CH2=CH-CHO - акролеин (акрилальдегид) - пропеналь
С6H5-CHO - бензальдегид
В более сложных случаях углеродную цепь группы R нумеруют, начиная с карбонильного углерода, затем с помощью числовых индексов указывают положение функциональных групп и различных заместителей.
В отличие от альдегидной, кетонная группа >C=O может находиться также в середине углеводородной цепи, поэтому в простых случаях указывают названия органических групп (упоминая их в порядке увеличения) и добавляют слово «кетон»: диметилкетон CH3–CO–CH3, метилэтилкетон CH3CH2–CO–CH3. В более сложных случаях положение кетонной группы в углеводородной цепи указывают цифровым индексом, добавляя суффикс «он». Нумерацию углеводородной цепи начинают с того конца, который находится ближе к кетонной группе.
В молекуле кетона радикалы могут быть одинаковыми или разными. Поэтому кетоны, как и простые эфиры, делятся на симметричные и смешанные.
Химические свойства
Строение оксо-группы. Альдегиды характеризуются высокой реакционной способностью. Большая часть их реакций обусловлена наличием карбонильной группы. Атом углерода в карбонильной группе находится в состоянии sp2 -гибридизации и образует три σ- связи (одна из них - связь С-О), которые расположены в одной плоскости под углом 1200 друг к другу.
Схема строения карбонильной группы
Важнейшими реакциями альдегидов являются реакции нуклеофильного присоединения по двойной связи карбонильной группы.
1. Реакция с синильной кислотой. Одной из типичных реакций нуклеофильного присоединения альдегидов является присоединение синильной (циановодородной) кислоты, приводящее к образованию ά- оксинитрилов:
2. Взаимодействие со спиртами. Альдегиды могут взаимодействовать с одной или двумя молекулами спирта, образуя соответственно полуацетали и ацетали. Полуацеталями называются соединения, содержащие при одном атоме углерода гидроксильную и алкоксильную группы. Ацетали — это соединения, содержащие при одном атоме углерода две алкоксильные группы:
3. Взаимодействие с аммиаком и аминами. Реакция взаимодействия с аммиаком и аминами идет по типу «присоединение-отщепление», на первой стадии происходит присоединение аммиака или амина, а на второй стадии происходит отщепление воды с образованием двойной связи между карбонильным атомом углерода и атомом азота аминогруппы. Таким образом, образуются соединения, называемые основаниями Шиффа – соединения, содержащие фрагмент >C=NR. Соединения, образованные присоединением аминов, называются имином, гидроксиламином – оксимом, гидразином – гидразоном.
Продукт взаимодействия формальдегида с аммиаком несколько иной – это результат циклизации трех промежуточных молекул, в результате получается каркасное соединение гексаметилентетрамин, используемое в медицине как препарат уротропин.
4. Восстановление и окисление оксосоединений.
Восстановление – это процесс увеличения числа атомов водорода в молекулах органических соединений и уменьшения числа атомов кислорода. Присоединение водорода к альдегидам осуществляется в присутствии катализаторов (Ni, Co, Pd и др.) и приводит к образованию первичных спиртов (А). Присоединение водорода к кетонам приводит к образованию вторичных спиртов (Б).
Реакции окисления. Альдегиды и кетоны по-разному относятся к действию окислителей. Альдегиды легко (значительно легче, чем спирты) окисляются в соответствующие карбоновые кислоты. (В).
Кетоны окисляются значительно труднее, чем альдегиды. В мягких условиях кетоны не окисляются. При действии сильных окислителей в жестких условиях углеродная цепь молекулы кетона разрушается рядом с карбонильной группой и образуются кислоты с меньшим числом атомов углерода.
5. Качественные реакции на альдегиды. Одной из качественных реакций для обнаружения альдегидной группы является реакция “серебряного зеркала” — окисление альдегидов оксидом серебра (В).
Другая качественная реакция на альдегиды заключается в окислении их гидроксидом меди (II). При окислении альдегида светло-голубой гидроксид меди (II) превращается в желтый гидроксид меди (I) при комнатной температуре. Если подогреть раствор, то гидроксид меди (I) превращается в оксид меди (I) красного цвета, который плохо растворим в воде и выпадает в осадок:
CH3 – CH = O + 2Cu(OH)2 → CH3COOH + 2CuOH + H2O,
2CuOH → Cu2O↓ + H2O
Растворы формальдегида (формалин) используются в кожевенной промышленности для дубления кож, для дезинфекции зерно- и овощехранилищ, теплиц, парников, для протравливания семян перед посевом, для хранения анатомических препаратов, а также в производстве некоторых лекарственных препаратов.
Уксусный альдегид является исходным сырьем для получения в промышленном масштабе уксусной кислоты, уксусного ангидрида, этилового спирта, этилацетата и других ценных продуктов, а при конденсации с аминами и фенолами - различных синтетических смол.
Наиболее широкое промышленное применение имеет простейший представитель кетонов - ацетон. Ацетон является ценным растворителем, использующимся в лакокрасочной промышленности, в производстве искусственного шелка, кинопленки, бездымного пороха.
Алифатический альдегид СН3(СН2)7С(Н)=О (тривиальное название – пеларгоновый альдегид) содержится в эфирных маслах цитрусовых растений, обладает запахом апельсина, его используют как пищевой ароматизатор.
Ароматический альдегид ванилин содержится в плодах тропического растения ванили, сейчас чаще используется синтетический ванилин – широко известная ароматизирующая добавка в кондитерские изделия:
Ванилин
Бензальдегид С6Н5С(Н)=О с запахом горького миндаля содержится в миндальном масле и в эфирном масле эвкалипта. Синтетический бензальдегид используется в пищевых ароматических эссенциях и в парфюмерных композициях.
Бензофенон (С6Н5)2С=О и его производные способны поглощать УФ-лучи, что определило их применение в кремах и лосьонах от загара, кроме того, некоторые производные бензофенона обладают противомикробной активностью и применяются в качестве консервантов. Бензофенон обладает приятным запахом герани, и потому его используют в парфюмерных композициях и для ароматизации мыла.
Способность альдегидов и кетонов участвовать в различных превращениях определила их основное применение в качестве исходных соединений для синтеза разнообразных органических веществ: спиртов, карбоновых кислот и их ангидридов, лекарственных препаратов (уротропин), полимерных продуктов (фенолоформальдегидные смолы, полиформальдегид), в производстве всевозможных душистых веществ (на основе бензальдегида) и красителей.
14. Карбоновые кислоты
Карбоновыми кислотами называются соединения, содержащие карбоксильную группу . Общая формула R-СООН.
По числу карбоксильных групп карбоновые кислоты делят на монокарбоновые, или одноосновные (одна группа —СООН), дикарбоновые, или двухосновные (две группы —СООН), и т. д. В зависимости от строения углеводородного радикала, с которым связана карбоксильная группа, карбоновые кислоты бывают алифатическими (например, уксусная или акриловая), алициклическими (например, циклогексанкарбоновая) или ароматическими (бензойная, фталевая). Алифатические карбоновые кислоты с числом атомов углерода больше 6 называют также жирными кислотами, поскольку в виде сложных эфиров они входят в состав природных жиров и масел.
Номенклатура. В основе названий карбоновых кислот лежат названия соответствующих углеводородов. Наличие карбоксильной группы отражается окончанием –овая кислота. Карбоновые кислоты часто имеют тривиальные названия: муравьиная, уксусная и др.
Представители карбоновых кислот.
1. Монокарбоновые кислоты:
Алифатические насыщенные кислоты СnH2n+1СООН:
Формула |
Тривиальное название кислоты |
Систематическое название |
НСООН |
Муравьиная |
Метановая кислота |
СН3СООН |
Уксусная |
Этановая кислота |
C2H5COOH |
Пропионовая |
Пропановая кислота |
C3H7COOH |
Масляная |
Бутановая кислота |
C4H9COOH |
Валериановая |
Пентановая кислота |
C5H11COOH |
Капроновая |
Гексановая кислота |
C6H13COOH |
Энантовая |
Гептановая кислота |
C7H15COOH |
Каприловая |
Октановая кислота |
C8H17COOH |
Пеларгоновая |
Нонановая кислота |
C9H19COOH |
Каприновая |
Декановая кислота |
Алифатические ненасыщенные кислоты СnH2n-1СООН:
Формула |
Тривиальное название кислоты |
Систематическое название |
CH2=CH-СООН |
Акриловая |
Пропеновая кислота |
СH3 –СН=СН –СООН |
Кротоновая |
Бутен-2-овая кислота |
Ароматические кислоты: C6H5COOH Бензойная кислота
2. Дикарбоновые кислоты:
Алифатические насыщенные кислоты:
Формула |
Тривиальное название кислоты |
Систематическое название |
НООС—СООН |
Щавелевая |
Этандиовая |
НООС—CH2—СООН |
Малоновая |
пропандиовая |
НООС—СН2—CH2-СООН |
Янтарная |
бутандиовая |
НООС—(СН2)3—СООН |
Глутаровая |
пентандиовая |
Алифатические ненасыщенные кислоты: бутендиовая кислота СООН—СН=СН—СООН существует в виде двух π-диастереомеров – цис- изомера, который называется малеиновой кислотой (I), и транс-изомера,. который называется фумаровой кислотой (II).
Фумаровая участвует в цикле Кребса. Кожа человека образует фумарат при действии солнечного света. Фумаровая кислота также является побочным продуктом цикла мочевины. Малеиновая кислота в природе не обнаружена, синтезирована в лабораторных условиях, является ядовитой.
Ароматические кислоты:
Бензол-1,2-дикарбоновая Фталевая
Бензол-1,4-дикарбоновая Терефталевая
В липидах (жирах, маслах) наиболее часто встречаются следующие жирные кислоты:
1. Насыщенные: Пальмитиновая кислота C15H31COOH
Стеариновая кислота-та C17H35COOH
2. ненасыщенные:
Олеиновая кислота содержит одну двойную связь: С17Н33СООН
Линолевая кислота содержит две двойные связи: С17Н31СООН
Линоленовая кислота содержит три двойные связи: С17Н29СООН
Арахидоновая кислота содержит четыре двойные связи: С19Н31СООН
Изомерия
Возможны следующие виды изомерии:
1. Изомерия углеродной цепи. Она начинается с бутановой кислоты (С3Н7СООН), которая существует в виде двух изомеров: масляной и изомасляной (2-метилпропановой) кислот.
2. Изомерия положения кратной связи, например:
СН2=СН—СН2—СООН СН3—СН=СН—СООН
Бутен-3-овая кислота Бутен-2-овая кислота
(винилуксусная кислота) (кротоновая кислота)
3. Цис-, транс-изомерия, например:
4. Межклассовая изомерия: например, масляной кислоте (СН3-СН2-CH2-СООН) изомерны метиловый эфир пропановой кислоты (СН3-СН2-СО-О-СН3) и этиловый эфир уксусной кислоты (СН3-СО-О-CH2-СН3).
Химические свойства
1. Диссоциация кислот. В водном растворе карбоновые кислоты диссоциируют:
Однако это равновесие диссоциации сильно сдвинуто влево, поэтому карбоновые кислоты, как правило, слабые кислоты.
Вследствие взаимного влияния атомов в молекулах дикарбоновых кислот они являются более сильными, чем одноосновные.
2. Образование солей. Карбоновые кислоты обладают всеми свойствами обычных кислот: реагируют с активными металлами, основными оксидами, основаниями:
3. Образование функциональных производных. Для карбоновых кислот характерны реакции замещения гидроксильной группы в с образованием функциональных производных кислот, имеющие общую формулу R—СО—X; здесь R означает алкильную, арильную, амино- группы, группы галогенов.
а) Хлорангидриды получают действием хлорида фосфора (V) на кислоты:
б) При нагревании кислот с водоотнимающими средствами получаются ангидриды карбоновых кислот R—СО—О—СО—R': Ангидриды — очень реакционноспособные соединения. Ангидриды - летучие жидкости, с резким запахом. Большое техническое значение имеет уксусный ангидрид, кроме того он применяется для синтеза фармацевтических препаратов, красителей.
в) Сложные эфиры образуются при нагревании кислоты со спиртом в присутствии серной кислоты - реакция этерификации:
г) Реакции хлорангидридов карбоновых кислот с аммиаком приводят к образованию амидов:
Амидами карбоновых кислот называются производные этих кислот, в которых гидроксилъная группа замещена на аминогруппу. Общая формула амидов RCONH2. Функциональная группа СONH2 называется амидогруппой.
К амидам кислот относится мочевина. Это конечный продукт азотистого обмена в организме человека и животных. Образуется при распаде белков и выделяется вместе с мочой. Мочевину можно рассматривать как полный амид угольной кислоты:
4. Окислительно-восстановительные реакции карбоновых кислот.
Карбоновые кислоты при действии восстановителей способны превращаться в альдегиды или спирты:
Насыщенные карбоновые кислоты устойчивы к действию концентрированных серной и азотной кислот. Исключение составляет муравьиная кислота:
Муравьиная кислота НСООН отличается рядом особенностей, поскольку в ее составе есть альдегидная группа:
Муравьиная кислота — сильный восстановитель и легко окисляется до СО2. Она дает реакцию “серебряного зеркала”:
Кроме того, муравьиная кислота окисляется хлором: