Файл: Федеральное государственное бюджетное образовательное учереждение высшего образования тюменский индустриальный университет.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 08.11.2023
Просмотров: 215
Скачиваний: 3
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
2.13 Диаметр колонны
Диаметр колонны рассчитывается по наиболее нагруженному сечению по парам. В нашем случае в верхней части колонны расход паровой фазы больше в 5,726993/1,898107 = 3,02 раза, чем в нижней (см. пункт 2.11).
Примем к установке в верхней части колонны клапанные двухпоточные тарелки, а в нижней, наиболее нагруженной по жидкой фазе, части - клапанные четырёхпоточные тарелки.
Таблица 2.15 –Зависимость диаметра колонны и расстояния между тарелками
Диаметр колонны, м | Расстояние между тарелками, мм |
до 1,0 | 200-300 |
1,0-1,6 | 300-450 |
1,8-2,0 | 450-500 |
2,2-2,6 | 500-600 |
2,8-5,0 | 600 |
5,5-6,4 | 800 |
более 6,4 | 800-900 |
Расстояние между тарелками принимается в зависимости от диаметра колонны (Таблица 2.15). На практике указанные рекомендации не всегда выполняются. Для большинства колонн расстояния между тарелками принимаются таким образом, чтобы облегчить чистку, ремонт и инспекцию тарелок: в колоннах диаметром до 2 м – не менее 450 мм, в колоннах большего диаметра – не менее 600 мм, в местах установки люков – не менее 600 мм. Кроме этого, в колоннах с большим числом тарелок для снижения высоты колонны, её металлоёмкости и стоимости расстояние между тарелками уменьшают.
Примем расстояние между тарелками 600 мм, затем проверим соответствие этой величины и рассчитанным диаметром колонны.
Диаметр рассчитывается из уравнения расхода:
, м
где VП – объёмный расход паров, м3/с;
Wmax – максимальная допустимая скорость паров, м/с
, м/с
где Сmax – коэффициент, зависящей от типа тарелки, расстояния между тарелками, нагрузки по жидкости
;
ж и п – плотность жидкой и паровой фазы, кг/м3.
Сmax = K1.K2.C1 – К3( – 35)
Значение коэффициента С1 определяем по графику в зависимости от принятого расстояния между тарелками (Приложение 1). С1 = 1050.
Коэффициент К3 = 5,0 для струйных тарелок, для остальных тарелок К3 = 4,0.
Коэффициент находится по уравнению:
,
где LЖ – массовый расход жидкой фазы в верхней части, кг/ч;
Коэффициент К1 принимается в зависимости от конструкции тарелок:
Колпачковая тарелка 1,0
Тарелка из S-образных элементов 1,0
Клапанная тарелка 1,15
Ситчатая и струйная тарелка 1,2
Струйная тарелка с отбойниками 1,4
Коэффициент К2 зависит от типа колонны:
Атмосферные колонны 1,0
Ваккумные колонны с промывным сепаратором в зоне питания 1,0
Вакуумные колонны без промывного сепаратора 0,9
Вакуумные колонны для перегонки
пенящихся и высоковязких жидкостей 0,6
Абсорберы 1,0
Десорберы 1,13
Сmax = 1,15 . 1,0 . 1050 – 4(131,37 – 35) = 822,02
= 0,522 м/с
Диаметр колонны:
м
Полученный диаметр округляется в большую сторону до ближайшего стандартного значения. Для стальных колонн рекомендованы значения диаметров от 0,4 до 1,0 м через каждые 0,1 м, от 1,2 до 4,0 м через 0,2 м, далее 2,5 м, 4,5 м, 5,0 м, 5,6 м, 6,3 м, от 7,0 до 10 м через 0,5 м, от 11,0 до 14,0 м через 1,0 м, от 16,0 до 20,0 м через 2,0 м.
Итак, примем диаметр колонны DK = 3,8 м.
Проверяем скорость паров при принятом диаметре колонны:
м/с
Она находится в допустимых пределах (0,4-0,7 м/с) для колонн под давлением и расстоянии между тарелками 600 мм.
Проверяем нагрузку тарелки по жидкости:
м3/(м. ч),
где LV – объёмный расход жидкости, м3/ч;
n – число потоков на тарелке;
- относительная длина слива, обычно находится в пределах 0,65-0,75.
Полученное значение расхода жидкости на единицу длины слива меньше максимально допустимого, которое составляет для данного типа тарелок
м3/(м. ч).
2.14 Высота колонны
Высота колонны рассчитывается по уравнению:
НК = H1 + Hк + Ни + Нп+ Н2 +Нн+ Но,м
где Н1 – высота от верхнего днища до верхней тарелки, м;
Нк – высота концентрационной тарельчатой части колонны, м;
Ни – высота исчерпывающей, отгонной тарельчатой части колонны, м;
Нп – высота секции питания, м;
Н2 – высота от уровня жидкости в кубе колонны до нижней тарелки,м;
Нн – высота низа колонны, от уровня жидкости до нижнего днища, м;
Но – высота опоры, м.
Высота Н1 (сепарационное пространство) принимается равной половине диаметра колонны, если днище полукруглое, и четверти диаметра, если днище эллиптическое. Полушаровые днища применяют для колонн диаметром более 4 метров.
Поэтому Н1 = 0,25. 3,8 = 0,95 м.
Высоты Hк и Ни зависят от числа тарелок в соответствующих частях колонны и расстояния между ними:
Нк = (Nконц– 1)h = (35 – 1)0,6 = 20,4 м
Ни = (Nотг– 1)h = (35 – 1)0,6 = 20,4 м
где h = 0,6 м – расстояние между тарелками.
Высота секции питания Нпберётся из расчёта расстояния между тремя-четырьмя тарелками:
Нп = (4 - 1)h= (4 - 1)0,6 =1,8 м
Высота Н2 принимается равной от 1 до 2 м, чтобы разместить глухую тарелку и иметь равномерное распределение по сечению колонны паров, поступающих из печи. Примем Н2= 1,5 м.
Высота низа (куба) колонны Нн рассчитывается, исходя из 5-10 минутного запаса остатка, необходимого для нормальной работы насоса в случае прекращения подачи сырья в колонну:
м
где ж – абсолютная плотность остатка при температуре низа колонны (см. пункт 2.11);
Fк = - площадь поперечного сечения колонны, м2.
Штуцер отбора нижнего продукта должен находится на отметке не ниже 4-5 м от земли, для того, чтобы обеспечить нормальную работу горячего насоса. Поэтому высота опоры Н
о конструируется с учётом обеспечения необходимого подпора жидкости и принимается высотой не менее 4-5 м. Примем Но = 4 м.
Полная высота колонны:
НК = 0,95+20,4+20,4+1,8+6,88+4 = 54,43 м
Список литературы
1. Ахметов С.А. Технология глубокой переработки нефти и газа: Учебное пособие для вузов. - Уфа: Изд-во «Гилем», 2002. - 672 с.
2. Мановян А.К. Технология первичной переработки нефти и природного газа: Учебное пособие для вузов. – М.: Химия, 2001. – 568 с.
3. Танатаров М.А., Ахметшина М.Н., Фасхутдинов Р.А. Технологические расчеты установок переработки нефти. - М.: Химия, 1987. - 352 с.
4. Сарданашвили А.Г., Львова А.И. Примеры и задачи по технологии переработки нефти и газа. - М.: Химия, 1973. - 272 с.
5. Эмирджанов Р.Т., Лемберанский Р.А. Основы технологических расчетов в нефтепереработке и нефтехимии. - М.: Химия, 1989. - 192 с.
6. Александров И.А. Ректификационные и абсорбционные аппараты. - М.: Химия, 1979. - 280 с.
7. Александров И.А. Перегонка и ректификация в нефтепереработке. - М.: Химия, 1981. 352 с.
8. Багатуров С.А. Основы теории и расчета перегонки и ректификации. - М.: Химия, 1974. - 440 с.
9. Кузнецов А.А., Кагерманов С.М., Судаков Е.Н. Расчеты процессов и аппаратов нефтеперерабатывающей промышленности. - Л.: Химия, 1974. - 344 с.
10. Расчеты основных процессов и аппаратов нефтепереработки: Справочник / Под ред. Е.Н.Судакова. - М.: Химия, 1979. - 569 с.
11. Основные процессы и аппараты химической технологии: Пособие по проектированию / Под ред. Ю.И.Дытнерского. М.: Химия, 1983. - 272 с.
12. Справочник нефтепереработчика: Справочник / Под ред. Г.А. Ластовкина, Е.Д.Радченко и М.Г.Рудина. - Л.: Химия, 1986. - 648 с.
13. Рудин М.Г. Карманный справочник нефтепереработчика. - Л.: Химия, 1989. - 464 с.
14. Скобло А.И., Молоканов Ю.К., Владимиров А.И., Щелкунов В.А. Процессы и аппараты нефтегазопереработки и нефтехимии. - М.: ООО "Недра-Бизнесцентр", 2000. - 677 с.
15. Колонные аппараты. Каталог ВНИИнефтемаш. - М.: Изд. ЦИНТИхимнефтемаш, 1992. - 26 с.