Файл: Реферат По дисциплине Новые конструкционные материалы.docx

ВУЗ: Не указан

Категория: Реферат

Дисциплина: Не указана

Добавлен: 09.11.2023

Просмотров: 34

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

Костромской государственный университет

Кафедра технологии машиностроения

Реферат

По дисциплине «Новые конструкционные материалы»

По теме: «Техническое применение нанопродукции в машиностроении. Углеродные нанотрубки»

Выполнил:

студент 1 курса группы 2-ММо-3

Сорокин Кирилл Александрович

Проверил:

д.т.н., профессор Киселев М. В.

Кострома 2022

Содержание

  1. Введение 3

  2. Углеродные нанотрубки 6

  3. Заключение 19

  4. Список литературы 20

Введение

Нанотехнология - технология с атомарной точностью - обладает революционным потенциалом для решения важнейших научно-технических задач. Но нанотехнологию в связи с её мультдисциплинарностью некорректно выделять в отдельную отрасль, а необходимо принять её как новый уровень в развитии различных отраслей промышленности и народного хозяйства.

Придавая материалам и системам принципиально новые качества, нанотехнология может обеспечить прогресс практически во всех существующих областях деятельности (от автомобилестроения и компьютерной техники до принципиально новых методов лечения). Можно с уверенностью сказать, что в этом столетии нанотехнология станет стратегическим направлением развития науки и техники, что потребует фундаментальной перестройки существующих технологий производства промышленных изделий, лекарственных препаратов, систем вооружения и т.д.

Традиционные методы производства работают с порциями вещества, состоящими из миллиардов и более атомов. Это значит, что даже самые точные приборы, произведённые человеком до сих пор, на атомарном уровне выглядят как беспорядочная мешанина. Переход от манипуляции с веществом к манипуляции отдельными атомами — это качественный скачок, обеспечивающий беспрецедентную точность и эффективность.

В 1959 году нобелевский лауреат Ричард Фейнман в своём выступлении предсказал, что в будущем, научившись манипулировать отдельными атомами, человечество сможет синтезировать все, что угодно. В 1981 году появился первый инструмент для манипуляции атомами — туннельный микроскоп, изобретённый учеными из IBM. Оказалось, что с помощью этого микроскопа можно не только «видеть» отдельные атомы, но и поднимать и перемещать их. Этим была продемонстрирована принципиальная возможность манипулировать атомами, а стало быть, непосредственно собирать из них, словно из кирпичиков, все, что угодно: любой предмет, любое вещество.

Нанотехнологии обычно делят на три направления:

  • изготовление электронных схем, элементы которых состоят из нескольких атомов

  • создание наномашин, то есть механизмов и роботов размером с молекулу

  • непосредственная манипуляция атомами и молекулами и сборка из них чего угодно

Благодаря стремительному прогрессу в таких технологиях, как оптика, нанолитография, механохимия и 3D прототипировние, нанореволюция может произойти уже в течение следующего десятилетия. Когда это случится, нанотехнология окажет огромное влияние практически на все области промышленности и общества.

Развитие нанотехнологий обещает массовое распространение новых конструкционных материалов с порою уникальными свойствами и характеристиками. Наибольший интерес для инженеров и исследователей представляют углеродные материалы, из которых в настоящее время наиболее изученными, а также наиболее перспективными для целей практического применения являются углеродные нанотрубки (УНТ). Они обладают самым широким набором уникальных свойств, делающих их чрезвычайно перспективными для использования, в том числе в автомобилестроении.

Баллистический характер электропроводности УНТ (электроны движутся, как бы скользя по поверхности, не встречая препятствий) позволит создавать высокоэффективные электропроводящие узлы различных машин и механизмов, в том числе автомобилей.

Углеродные нанотрубки уже находят применение в конструкции современных автомобилей. Например, инженеры компании Toyota добавляет композиционный материал на основе УНТ в пластиковые бамперы и дверные панели своих автомобилей. Помимо повышения прочности и снижения массы, пластик со смолой из УНТ становится электропроводным, и его можно покрывать теми же красками с электрическим нанесением, что и металлические детали.

Электронные системы все более тесно интегрируются в конструкцию автомобиля. Существует тенденция дальнейшего расширения использования электроники в автомобилях с одновременным усовершенствованием самой полупроводниковой техники и появлении наноэлектроники и молекулярной электроники.

Нанотранзисторы, в том числе с нанотрубками в конструкции будут обладать рядом улучшенных характеристик и бесспорных преимуществ по сравнению с традиционными кремниевыми:

  • Повышенное быстродействие;

  • термо - и радиационная стойкость;

  • миниатюрность;

  • низкое энергопотребление и как следствие - незначительное тепловыделение при работе.

Большой интерес представляют нанотехнологии для создания перспективных автомобилей на топливных элементах.

С помощью нанотрубок предполагается решить проблему надежного и безопасного хранения водорода на борту транспортного средства, так как наряду с металлами и жидкостями углеродные нанотрубки могут заполняться газообразными веществами и связывать большое его количество.

Китайские и американские ученые совместно разработали нанолампочку, в которой нитью накаливания служит не вольфрамовая проволочка, а углеродные нанотрубки. Лампочка с УНТ более экономичная - при равном напряжении она испускает больше света.

Сейчас конструкторы «гибридных» автомобилей уже сталкиваются с потребностью в компактных, легких и высокоемких аккумуляторных батареях. Стоит напомнить, что ставшие традиционными кислотные аккумуляторы не годятся, в силу большой массы, громоздкости, экологической «небезупречности». С ростом парка гибридов, а также с массовым появлением водородных автомобилей на ТЭ потребность в автономных источниках хранения электрической энергии возрастет еще больше. Нанотехнологии предлагают ряд решений данной проблемы.

В силу того, что большинство автомобилей будущего будет работать на электрической тяге, гораздо больший интерес станет представлять использование фотоэлементов в конструкции автомобиля. В этом отношении нанотехнология позволяет создавать долговечные, ультратонкие и гибкие преобразователи солнечного света. Кроме того, использование нанотехнологических принципов позволит получать солнечные панели с КПД до 80-90%.

Кроме конструкции автомобиля, измениться структура самой автомобильной промышленности.

Так с появлением автоматизированной молекулярной нанотехнологии получит новое развитие уже наметившаяся тенденция - разделение функций разработки/проектирования автомобилей и их производства с окончательным закреплением приоритета за первой из перечисленных двух функций. Собственно в будущем автомобильные концерны будут только разрабатывать конструкции тех или иных моделей автомобилей для последующей продажи права на их производство методами поатомной сборки сторонним организациям.

Тем самым не автомобиль будет товаром, а информация об особенности его конструкции, что будет полностью соответствовать модели новой экономической формации, где единственным предметом обмена станет информация.

Углеродные нанотрубки

Углеродные нанотрубки - протяжённые структуры, состоящие из свёрнутых гексагональных сеток с атомами углерода в узлах, открытые в 1991 году японским исследователем Иджимой.

Первая нанотрубка была получена путём распыления графита в электрической дуге. Измерения, выполненные с помощью электронного микроскопа, показали, что диаметр таких нитей не превышает нескольких нанометров, а длина от одного до нескольких микрон.



Рис.1. Нанотрубка под электронным микроскопом

Разрезав нанотрубку вдоль продольной оси, было обнаружено, что она состоит из одного или нескольких слоёв, каждый из которых представляет гексагональную сетку графита, основу которой составляют шестиугольники с расположенными в вершинах углов атомами углерода. Во всех случаях расстояние между слоями равно 0,34 нм, то есть такое же, как и между слоями в кристаллическом графите. Верхние концы трубочек закрыты полусферическими крышечками, каждый слой которых составлен из шести - и пятиугольников, напоминающих структуру половинки молекулы фуллерена.

Нанотрубки могут быть большие и маленькие, однослойные и многослойные, прямыеи спиральные (Рис. 2).



Рис.2. Примеры нанотрубок

Структура

Идеальная нанотрубка – это цилиндр, полученный при свёртывании плоской гексагональной сетки графита без швов. Взаимная ориентация гексагональной сетки графита и продольной оси нанотрубки определяет очень важную структурную характеристику нанотрубки – хиральность. Хиральность - это стереохимическое свойство, означающее несовместимость объекта со своим зеркальным отображением. Хиральность характеризуется 2 целыми числами (m, n), которые указывают местонахождение того шестиугольника сетки, который в результате свёртывания должен совпасть с шестиугольником, находящимся в начале координат. Хиральность нанотрубки может быть также однозначно определена углом α, образованным направлением сворачивания нанотрубки и направлением, в котором соседние шестиугольники имеют общую сторону. Имеется очень много вариантов свёртывания нанотрубок, но среди них выделяются те, в результате реализации которых не происходит искажения структуры гексагональной сетки. Этим направлениям отвечают углы α=0 и α=300, что соответствует хиральности (m, 0) и (2n, n).

Индексы хиральности однослойной нанотрубки определяют её диаметр:

D= m2+n2-mn * 3do/¦Р

где do=0,142 нм – расстояние между атомами углерода в гексагональной сетке графита. Приведённое выше выражение позволяет по диаметру нанотрубки определить её хиральность.

Среди однослойных нанотрубок особый интерес представляют нанотрубки с хиральностью (10, 10). Проведённые расчёты показали, что нанотрубки с подобной структурой должны обладать металлическим типом проводимости, а также иметь повышенную стабильность и устойчивость по сравнению с трубками других хиральностей. Справедливость этих утверждений была экспериментально подтверждена в 1996 году, когда впервые был осуществлён синтез нанотрубок с D=1,36 нм, что соответствует хиральности (10, 10).

Получение

В настоящее время наиболее распространённым является метод термического распыления графитовых электродов в плазме дугового разряда. Процесс синтеза осуществляется в камере, заполненной гелием под давлением около 500 торр (Торр - внесистемная единица давления, равная EQ \f (1;760) части физической (нормальной) атмосферы, то есть 101325:760 = 133,322 (н/м2, или паскаля)Названа в честь Э. Торричелли. Обозначения: русское - торр, международное - Torr. В научной литературе на русском языке чаще применяется равная ей единица - миллиметр ртутного столба (мм рт. ст.). При горении плазмы происходит интенсивное термическое испарение анода, при этом на торцевой поверхности катода образуется осадок, в котором формируются нанотрубки углерода.

Максимальное количество нанотрубок образуется тогда, когда ток плазмы минимален и его плотность около 100 А/см2. В экспериментальных установках напряжение между электродами составляет около 15-25 В, ток разряда несколько десятков ампер, расстояние между концами графитовых электродов 1-2 мм. В процессе синтеза около 90% массы анода осаждается на катоде.

Образующиеся многочисленные нанотрубки имеют длину около 40 мкм. Они нарастают на катоде перпендикулярно плоской поверхности его торца и собраны в цилиндрические пучки диаметром около 50 мкм. Пучки нанотрубок регулярно покрывают поверхность катода, образую сотовую структуру.



Рис. 3. Выращенные на катоде нанотрубки

Содержание нанотрубок в углеродном осадке около 60%.

Для разделения компонентов полученный осадок помещают в метанол и обрабатывают ультразвуком. В результате получается суспензия, которая после добавления воды подвергается разделению в центрифуге. Крупные частицы прилипают к стенкам центрифуги, а нанотрубки остаются плавающими в суспензии. Затем нанотрубки промывают в азотной кислоте и просушивают в газообразном потоке кислорода и водорода в соотношении 1:4 при температуре 7500 C в течение 5 минут.

В результате такой обработки получается лёгкий пористый материал, состоящий из многочисленных нанотрубок со средним диаметром 20 нм и длиной 10 мкм.

Пока максимальная достигнутая длина нановолокна - 1 см. В связи со сложностью получения нанотрубок, 1 грамм стоит несколько сот долларов США.

Химическая модификация

Возможности использования нанотрубок в молекулярной электронике неизмеримо возрастают при переходе от чисто углеродных к химически модифицированным нанотрубкам. Например, благодаря наличию цилиндрической полости внутрь углеродных нанотрубок, как было сказано, удается внедрить различные элементы, включая тяжелые металлы. Возможно добавление аддендов (например, атомов фтора) на внешнюю поверхность трубки. Кроме углеродных сейчас умеют получать и бор-азотные нанотрубки. Во всех этих случаях должны получаться материалы с новыми и пока еще экспериментально не изученными свойствами. Подобно тому, как в начале 90-х годов перед квантовой химией стояла задача прогнозирования свойств чисто углеродных нанотрубок (с которой она блестяще справилась, вызвав бурный рост экспериментальных исследований), теперь требуются расчеты таких, существенно более сложных систем.

Металлизированные нанотрубки.

Расчеты металлизированных нанотрубок потребовали разработки нового квантово-химического метода (названного методом линеаризованных присоединенных цилиндрических волн). В этом методе принимается допущение, что система заключена в непроницаемый потенциальный барьер цилиндрической формы, причем в области атомов электронный потенциал сферически симметричен (практически совпадает с атомным), а в межатомном пространстве постоянен (рис. 4). Тогда электронный спектр системы определяется свободным движением электронов в межатомном пространстве и рассеянием на атомных центрах.



Рис. 4. Легированная металлом (цветные шарики) углеродная нанотрубка внутри цилиндрического потенциального барьера.

I - область постоянного межатомного потенциала, II - область атомного потенциала. (При расчетах атомные сферы считаются касающимися друг друга.)

Легирование – (лат. ligo - связываю, соединяю), введение в состав металлических сплавов легирующих элементов для придания сплавам определённых физических, химических или механических свойств.

Как показали расчеты, внедрение переходных металлов в углеродные нанотрубки должно приводить к резкому возрастанию проводимости как полупроводниковых нанотрубок (за счет появления в запрещенной зоне электронных состояний металла), так и металлических (за счет повышения плотности состояний вблизи уровня Ферми - энергия, отделяющая занятые состояния от свободных). Все бор-азотные нанотрубки, в отличие от углеродных, независимо от их геометрии исходно должны быть широкозонными полупроводниками. Внедрение же в них переходных металлов M с образованием структур типа представленной ниже(рис. 5).



Рис. 5.

Переходные металлы - элементы побочных подгрупп периодической системы (d - и f - элементы).

Общие свойства:

1. Все переходные элементы- металлы имеют низкую электроотрицательность.

2. Все элементы проявляют переменные степени окисления. Начиная с III группы низшая степень окисления имеет основной характер, высшая – кислотный, средние – амфотерный.

3. Все элементы образуют комплексные соединения должны приводить к формированию металлической зонной структуры в системе.

Исходная однотипность электронных свойств бор-азотных нанотрубок может быть полезна в технологическом плане, так как облегчает изготовление нанопроводов с более воспроизводимыми характеристиками. Если одну половину полупроводниковой нанотрубки заполнить металлом, а вторую оставить нетронутой, мы опять получим молекулярный гетеропереход металл-полупроводник. В случае бор-азотной нанотрубки это будет гетеропереход широкозонный полупроводник–металл, на основе которого можно конструировать нанодиоды и другие элементы, способные функционировать при высоких температурах.

Нанотрубки с аддендами

Гетеропереход может образоваться и при фторировании нанотрубок. Учет стерических и p-электронных взаимодействий при расчетах полной энергии фторированных нанотрубок показал, что присоединение атомов F с внешней стороны нанотрубки более выгодно, чем с внутренней. При этом атомы фтора должны присоединяться сначала к открытым концам нанотрубок, а затем выстраиваться вдоль образующей.

В нанотрубках F-(n, n) и F-(n, 0) (рис. 6), достаточно длинных, чтобы можно было пренебречь концевыми эффектами, последний тип присоединения будет основным:



Рис. 6.

При добавлении фтора на внешнюю поверхность трубки меняется сетка p-связей, а значит - электрические и другие физические свойства. Как следует из расчетов, все нанотрубки F-(n, n) - полуметаллы, у которых на краю зоны Бриллюэна (зоны "разрешенных" значений энергии электронов в твёрдом теле) щель отсутствует и, так как все нанотрубки (n, n) металлические, наполовину фторированные нанотрубки



Рис. 8.

будут представлять собой молекулярные гетеропереходы металл-полуметалл, независимо от их диаметра.

Согласно расчетам, щель запрещенной зоны у нанотрубок типа F-(n, 0) исчезает, если (n+1) кратно трем (рис. 9). В остальных случаях модифицированные трубки - полупроводниковые. Так как в исходных, чисто углеродных нанотрубках (n, 0), запрещенная зона отсутствует, если n кратно трем, то наполовину модифицированные нанотрубки (n, 0)



Рис. 9.

будут, в зависимости от диаметра, образовывать гетеропереходы различных типов. Если (n – 1) кратно трем (n = 3l + 1, l = 1, 2, …), это будет гетеропереход полупроводник-полупроводник, причем ширина запрещенной щели в модифицированной части трубки примерно в два раза меньше, чем в исходной (рис. 10). При других значениях n образуется гетеропереход металл-полупроводник, но при n, кратном трем, металлическому концу соответствует немодифицированная часть нанотрубки, при n = 3l + 2-модифицированная.



Рис. 10. Зависимость ширины запрещенной зоны для исходных и модифицированных нанотрубок типа (n, 0) от параметра их диаметра n.

Свойства углеродной нанотрубки

Механические

Нанотрубки, как было сказано, являются на редкость прочным материалом, как на растяжение, так и на изгиб. Более того, под действием механических напряжений, превышающих критические, нанотрубки не "рвутся", а перестраиваются.

Основываясь на таком свойстве нанотрубок как высокая прочность, можно утверждать, что они являются наилучшим материалом для троса космического лифта на данный момент. Как показывают результаты экспериментов и численного моделирования, модуль Юнга однослойной нанотрубки достигает величин порядка 1-5 ТПа, что на порядок больше, чем у стали.

Приведённый ниже график показывает сравнение однослойной нанотрубки и высокопрочной стали.



1 - Трос космического лифта по подсчётам должен выдерживать механическое напряжение 62,5 ГПа

2 - Диаграмма растяжения (зависимость механического напряжения σ от относительного удлинения ε)

Чтобы продемонстрировать существенное различие между самыми прочными на текущий момент материалами и углеродными нанотрубками, проведём следующий мысленный эксперимент. Представим, что, как это предполагалось ранее, тросом для космического лифта будет служить некая клиновидная однородная структура, состоящая из самых прочных на сегодняшний день материалов, то диаметр троса у GEO (geostationary Earth orbit) будет около 2 км и сузится до 1 мм у поверхности Земли. В этом случае общая масса составит 60*1010 тонн. Если бы в качестве материала использовались углеродные нанотрубки, то диаметр троса у GEO составил 0,26 мм и 0,15 мм у поверхности Земли, в связи с чем общая масса была 9,2 тонн. Как видно из вышеуказанных фактов, углеродное нановолокно – это как раз тот материал, который необходим при постройке троса, реальный диаметр которого составит около 0,75 м, чтобы выдержать также электромагнитную систему, использующуюся для движения кабины космического лифта.

Электрические

Вследствие малых размеров углеродных нанотрубок только в 1996 году удалось непосредственно измерить их удельное электрическое сопротивление четырёхконтактным способом.

На полированную поверхность оксида кремния в вакууме наносили золотые полоски. В промежуток между ними напыляли нанотрубки длиной 2-3 мкм. Затем на одну из выбранных для измерения нанотрубок наносили 4 вольфрамовых проводника толщиной 80 нм. Каждый из вольфрамовых проводников имел контакт с одной из золотых полосок. Расстояние между контактами на нанотрубке составляло от 0,3 до 1 мкм. Результаты прямого измерения показали, что удельное сопротивление нанотрубок может изменяться в значительных пределах – от 5,1*10-6 до 0,8 Ом/см. Минимальное удельное сопротивление на порядок ниже, чем у графита. Большая часть нанотрубок обладает металлической проводимостью, а меньшая проявляет свойства полупроводника с шириной запрещённой зоны от 0,1 до 0,3 эВ.

Французскими и российскими исследователями (из ИПТМ РАН, Черноголовка) было открыто ещё одно свойство нанотрубок, как сверхпроводимость. Они проводили измерения вольт-амперных характеристик отдельной однослойной нанотрубки диаметром

1нм, свернутого в жгут большого числа однослойных нанотрубок, а также индивидуальных многослойных нанотрубок. Сверхпроводящий ток при температуре, близкой к 4К, наблюдался между двумя сверхпроводящими металлическими контактами. Особенности переноса заряда в нанотрубке существенно отличаются от тех, которые присущи обычным, трехмерным проводникам и, по-видимому, объясняются одномерным характером переноса.


Также де Гиром из Университета Лозанны (Швейцария) было обнаружено интересное свойство: резкое (около двух порядков величины) изменение проводимости при небольшом, на 5-10о, изгибе однослойной нанотрубки. Это свойство может расширить область применения нанотрубок. С одной стороны, нанотрубка оказывается готовым высокочувствительным преобразователем механических колебаний в электрический сигнал и обратно (фактически это - телефонная трубка длиной в несколько микрон и диаметром около нанометра), а, с другой стороны, это - практически готовый датчик мельчайших деформаций. Такой датчик мог бы найти применение в устройствах, контролирующих состояние механических узлов и деталей, от которых зависит безопасность людей, например, пассажиров поездов и самолетов, персонала атомных и тепловых электростанций и т. п.

  Капиллярные

Как показали эксперименты, открытая нанотрубка обладает капиллярными свойствами. Чтобы открыть нанотрубку, надо удалить верхнюю часть – крышечку. Один из способов удаления заключается в отжиге нанотрубок при температуре 8500 C в течение нескольких часов в потоке углекислого газа. В результате окисления около 10% всех нанотрубок оказываются открытыми. Другой способ разрушения закрытых концов нанотрубок – выдержка в концентрированной азотной кислоте в течение 4,5 часов при температуре 2400 C. В результате такой обработки 80% нанотрубок становятся открытыми.

Первые исследования капиллярных явлений показали, что жидкость проникает внутрь канала нанотрубки, если её поверхностное натяжение не выше 200 мН/м. Поэтому для ввода каких-либо веществ внутрь нанотрубок используют растворители, имеющие низкое поверхностное натяжение. Так, например, для ввода в канал нанотрубки некоторых металлов используют концентрированную азотную кислоту, поверхностное натяжение которой невелико (43 мН/м). Затем проводят отжиг при 4000 C в течение 4 часов в атмосфере водорода, что приводит к восстановлению металла. Таким образом были получены нанотрубки, содержащие никель, кобальт и железо.

Наряду с металлами углеродные нанотрубки могут заполняться газообразными веществами, например водородом в молекулярном виде. Эта способность имеет практическое значение, ибо открывает возможность безопасного хранения водорода, который можно использовать в качестве экологически чистого топлива в двигателях внутреннего сгорания. Также ученые смогли поместить внутрь нанотрубки целую цепочку из фуллеренов с уже внедренными в них атомами гадолиния

 (см. Рис.1).



Рис.1. C60 внутри однослойной нанотрубки

Капиллярные эффекты и заполнение нанотрубок.

Вскоре после открытия углеродных нанотрубок внима­ние исследователей привлекла возможность заполнения нанотрубок различными веществами, что не только представляет научный интерес, но также имеет большое значение для прикладных задач, поскольку нанотрубку, заполненную проводящим, полупроводящим или сверхпроводящим материалом, можно рассматривать как наиболее миниатюрный из всех известных к настоящему времени элементов микроэлектроники. Научный интерес к данной проблеме связан с возможностью получения экспериментально обоснованного ответа на вопрос: при каких минимальных размерах капиллярные явления сохраняют свои особенности, присущие макроскопиче­ским объектам? Впервые данная проблема рассмот­рена в задачи о втягивании молекулы НР внутрь нанотру­бок под действием поляризационных сил. При этом показано, что капиллярные явления, приводящие к втягиванию жидкостей, смачивающих внутреннюю поверхность трубки, внутрь капилляра, сохраняют свою природу при переходе к трубкам нанометрового диаметра.

Капиллярные явления в углеродных нанотрубках впервые осуществлены экспериментально в работе, где наблюдался эффект капиллярного втягивания расплавленного свинца внутрь нанотрубок. В этом экспери­менте электрическая дуга, предназначенная для синтеза нанотрубок зажигалась между электродами диаметром 0,8 и длиной 15 см при напряжении 30 В и токе 180 - 200 А. Образующийся на поверхности катода в результате термического разрушения поверхности анода слой мате­риала высотой 3-4 см извлекался из камеры и выдержи­вался в течение 5 ч при Т = 850° С в потоке углекислого газа. Эта операция, в результате которой образец потерял около 10% массы, способствовала очистке образца от частиц аморфного графита и открытию нанотрубок, находящихся в осадке. Центральная часть осадка, содержащего нанотрубки, помещалась в этанол и обрабатывалась ультразвуком. Диспергированный в хлороформе продукт окисления наносился на углерод­ную ленту с отверстиями для наблюдения с помощью электронного микроскопа. Как показали наблюдения, трубки, не подвергавшиеся обработке, имели бесшов­ную структуру, головки правильной формы и диаметр от 0,8 до 10 нм. В результате окисления около 10% нанотрубок оказались с поврежденными шапочками, а часть слоев вблизи вершины была содрана. Предназна­ченный для наблюдений образец, содержащий нанотрубки, заполнялся в вакууме каплями расплавленного свинца, которые получали в результате облучения метал­лической поверхности электронным пучком. При этом на внешней поверхности нанотрубок наблюдались капель­ки свинца размером от 1 до 15 нм. Нанотрубки отжига­лись в воздухе при 
Т = 400°С (выше температуры плавления свинца) в течение 30 мин. Как показывают результаты наблюдений, выполненных с помощью электронного микроскопа, часть нанотрубок после отжига оказалась заполненной твердым материалом. Аналогичный эффект заполнения нанотрубок наблю­дался при облучении головок трубок, открывающихся в результате отжига, мощным электронным пучком. При достаточно сильном облучении материал вблизи откры­того конца трубки плавится и проникает внутрь. Наличие свинца внутри трубок установлено методами рентгенов­ской дифракции и электронной спектроскопии. Диаметр самого тонкого свинцового провода составлял 1,5 нм. Согласно результатам наблюдений число заполненных нанотрубок не превышало 1%.

Последующие исследования направлены на деталь­ное изучение особенностей капиллярных явлений в углеродных нанотрубках, которые проявляются при их заполнении материалами различной природы. Резуль­таты этих исследований указывают на связь между величиной поверхностного натяжения материала и возможностью его капиллярного втягивания внутрь углеродной нанотрубки.

Анализируя результаты экспериментов, посвящен­ных исследованию капиллярных явлений в нанотрубках, следует обратить внимание на роль кислорода, присут­ствие которого зачастую определяет эти результаты. Так, эксперименты по заполнению нанотрубок висму­том и свинцом, выполненные в вакууме, закончились неудачей, в то время как аналогичные эксперименты проведенные в присутствие атмосферного воздуха, при­вели к появлению капиллярного эффекта. Такой резуль­тат вполне объясним с точки зрения изложенных выше представлений о корреляции между капиллярными явле­ниями и величиной поверхностного натяжения соответ­ствующего расплава. Поверхностное натяжение расплав­ленных оксидов свинца и висмута значительно превы­шает соответствующее значение для чистых расплавлен­ных металлов, поэтому наличие кислорода, приводящее к образованию оксидов, способствует протеканию капиллярных явлений.

Хотя нанотрубки не проявляют капиллярные свойства для материалов с величиной поверхностного натяжения более 200 мН м-1, удалось решить эту проблему. Используют растворители, имеющие низкое поверхностное натяжение и способных по этой причине проникать в нанотрубки за счет явлений капиллярности. При этом в качестве растворителя используют концентрированную азотную кислоту, поверхностное натяжение которой относительно невелико ( около 43 мН м-1).


Существует другой эффективный способ получения нанотрубок, заполнение металлами и их соединениями, основан на технологии каталитического синтеза нанотрубок, в которых металлы используются в качестве катализатора. Т. е. отверстие в аноде заполняется смесью графитового и металлического порошка

Заключение

Ключевые технологии и материалы всегда играли большую роль в истории цивилизации, выполняя не только узко производственные функции, но и социальные. Достаточно вспомнить, как сильно отличались каменный и бронзовый века, век пара и век электричества, атомной энергии и компьютеров. По мнению многих экспертов, XXI в. будет веком нанонауки и нанотехнологий, которые и определят его лицо. Воздействие нанотехнологий на жизнь обещает иметь всеобщий характер, изменить экономику и затронуть все стороны быта, работы, социальных отношений. С помощью нанотехнологий мы сможем экономить время, получать больше благ за меньшую цену, постоянно повышать уровень и качество жизни.

Список литературы

1.Эрик Ландре. Общие направления развития нанотехнологии до 2020 г. Пер. с англ. О.Ю. Санфировой // Российские нанотехнологии. Том 2, № 34, 2007.

2. Гусев А.И. Наноматериалы, наноструктуры, нанотехнологии. М., 2005

3.Алферов Ж.И., Асеев А.Л., Гапонов С.В., Копьев П.С, Панов В.И., Полторацкий Э.А., Сибельдин Н.Н., Сурис Р.А. Наноматериалы и нанотехнологий // Микросистемная техника. 2003

4.Нестеров C.Б.. Нанотехнология. Современное состояние и перспективы. «Новые информационные технологии». Тезисы докладов XII Международной студенческой школы-семинара-М.: МГИЭМ, 2004

5.Сухочев Г.А. Направления развития научнопроизводственной базы нанотехнологий в машиностроении региона: сб. науч. трв. Воронеж. ГОУ ВПО Воронежский ГТУ, 2008