Файл: Строение персональных компьютеров ibm pc.docx

ВУЗ: Не указан

Категория: Реферат

Дисциплина: Не указана

Добавлен: 09.11.2023

Просмотров: 24

Скачиваний: 3

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное автономное образовательное учреждение высшего образования «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина»

Кафедра радиоэлектроники и телекоммуникаций



РЕФЕРАТ

по дисциплине: «Введение в специальность»

на тему: Строение персональных компьютеров IBM PC

Выполнила студентка 1-го курса РИ-121121

Селифанова Элина Нажмутдиновна

Проверил:

Профессор, Доктор технических наук

Иванов Вячеслав Элизбарович

Содержание

Введение……………………………………………………………………....3

Глава 1. Общая структура персонального компьютера………….………...4

1.1. Центральный процессор CPU………………………..……..............4

1.2. Элементы памяти …………………………………………...............5

1.3. Периферийные устройства…………………..……………………..6

1.4. Устройства ввода-вывода и коммуникаций……………….............7

Глава 2. Адаптеры, контроллеры и иерархия подключений периферийных устройств ……………………………………………………………………..8

Заключение………………………………………………………………..…11

Список использованной литературы……………………………………....12

Введение

Распространение персональных компьютеров к концу 70-х годов привело к некоторому снижению спроса на большие ЭВМ и мини ЭВМ. Это стало предметом серьезного беспокойства фирмы IBM (International Bussines Machines Corporation) - ведущей компании по производству больших ЭВМ, и в 1979 году фирма IBM решила попробовать свои силы на рынке персональных компьютеров.

Однако руководство фирмы недооценило будущую важность этого рынка и рассматривало создание компьютера всего лишь как мелкий эксперимент - что-то вроде одной из десятков проводившихся в фирме работ по созданию нового оборудования. Чтобы не тратить на этот эксперимент слишком много денег, руководство фирмы предоставило подразделению, ответственному за данный проект, невиданную в фирме свободу. В частности, ему было разрешено не конструировать персональный компьютер "с нуля", а использовать блоки, изготовленные другими фирмами. И это подразделение сполна использовало предоставленный шанс.

Прежде всего, в качестве основного микропроцессора компьютера был выбран новейший тогда 16-разрядный микропроцессор Intel-8088.Его использование позволило значительно увеличить потенциальные возможности компьютера, так как новый микропроцессор позволял работать с 1 Мбайтом памяти, а все имевшиеся тогда компьютеры были ограничены 64 Кбайтами. В компьютере были использованы и другие комплектующие различных фирм, а его программное обеспечение было поручено разработать небольшой фирме Microsoft.


В августе 1981 года новый компьютер под названием IBM PC был официально представлен публике и вскоре после этого он приобрел большую популярность у пользователей. Через один-два года компьютер IBM PC занял ведущее место на рынке, вытеснив модели 8-битовых компьютеров. Фактически IBM PC стал стандартом персонального компьютера. Сейчас такие компьютеры ("совместимые с IBM PC") составляют около 90% всех производимых в мире персональных компьютеров.

Глава 1. Основные блоки IBM PC

Любой IBM PC-совместимый компьютер представляет собой реализацию так называемой фон-неймановской архитектуры вычислительных машин. Эта архитектура была представлена Джорджем фон Нейманом (George von Neumann) еще в 1945 году и имеет следующие основные признаки.

Машины состоят из трёх частей (блоков):

  • блока управления;

  • арифметико-логического устройства (АЛУ);

  • памяти;

  • устройств ввода-вывода;

В ней реализуется концепция хранимой программы: программы и данные хранятся в одной и той же памяти. Выполняемые действия определяются блоком управления и АЛУ, которые вместе являются основой центрального процессора.

Фон-неймановская архитектура – не единственный вариант построения ЭВМ, есть и другие, которые не соответствуют указанным принципам (например, потоковые машины). Однако подавляющее большинство современных компьютеров основаны именно на указанных принципах, включая и сложные многопроцессорные комплексы, которые можно рассматривать как объединение фон-неймановских машин. Конечно же, за более чем полувековую историю ЭВМ классическая архитектура прошла длинный путь развития. Тем не менее ПК можно «разложить по полочкам» следующим образом.

    1. Центральный процессор CPU

Центральный процессор выбирает и исполняет команды из памяти последовательно, адрес очередной команды задается «счетчиком адреса» в блоке управления. Этот принцип исполнения называется последовательной передачей управления. Данные, с которыми работает программа, могут включать переменные – именованные области памяти, в которых сохраняются значения с целью дальнейшего использования в программе.

Центральный процессор (АЛУ с блоком управления) реализуется микропроцессором семейства х86 – от 8086/88 до новейших процессоров Pentium, Athlon и Opteron (и это не конец истории). При всей внутренней суперскалярности и суперконвейеризированности современного процессора внешне он соблюдает вышеупомянутый принцип последовательной передачи управления.



Набор арифметических, логических и прочих инструкций насчитывает несколько сотен, а для потоковой обработки придуман принцип SIMD (Single Instruction Multiple Data – множество комплектов данных, обрабатываемых одной инструкцией), по которому работают расширения ММХ, 3DNow!, SSE.

Процессор имеет набор регистров, часть которых доступна для хранения операндов, выполнения действий над ними и формирования адреса инструкций и операндов в памяти. Другая часть регистров используется процессором для служебных (системных) целей, доступ к ним может быть ограничен (есть даже программно-невидимые регистры).

Все компоненты компьютера представляются для процессора в виде наборов ячеек памяти или/и портов ввода-вывода, в которые процессор может записывать и/или из которых может считывать содержимое.

    1. Элементы памяти

Память «расползлась» по многим компонентам. Оперативная память (ОЗУ) – самый большой массив ячеек памяти со смежными адресами – реализуется, как правило, на модулях (микросхемах) динамической памяти. Для повышения производительности обмена данными (включая и считывание команд) оперативная память кэшируется сверхоперативной памятью. Два уровня кэширования территориально располагаются в микропроцессоре. Оперативная память вместе с кэшем всех уровней (в настоящее время – до трех) представляет собой единый массив памяти, непосредственно доступный процессору для записи и чтения данных, а также считывания программного кода.

Помимо оперативной память включает также постоянную (ПЗУ), из которой можно только считывать команды и данные, и некоторые виды специальной памяти (например, видеопамять графического адаптера). Вся эта память (вместе с оперативной) располагается в едином пространстве с линейной адресацией. В любом компьютере обязательно есть энергонезависимая память, в которой хранится программа начального запуска компьютера и минимально необходимый набор сервисов (ROM BIOS).

Процессор (один или несколько), память и необходимые элементы, связывающие их между собой и с другими устройствами, называют центральной частью, или ядром, компьютера (или просто центром). То, что в фон-неймановском компьютере называлось устройствами ввода-вывода (УВВ), удобнее называть периферийными устройствами.

    1. Периферийные устройства


Периферийные устройства (ПУ) – это все программно-доступные компоненты компьютера, не попавшие в его центральную часть. Их можно разделить по назначению на несколько классов:

Устройства хранения данных (устройства внешней памяти) – дисковые (магнитные, оптические, магнитооптические), ленточные (стримеры), твердотельные (карты, модули и USB-устройства на флэш-памяти). Эти устройства используются для сохранения информации, находящейся в памяти, на энергонезависимых носителях и загрузки этой информации в оперативную память. В каком виде хранится информация на этих устройствах, нам не так уж важно (главное – правильно считать то, что сохранили).

Устройства ввода-вывода служат для преобразования информации из внутреннего представления компьютера (биты и байты) в форму, понятную окружающим, и обратно. Под окружающими подразумеваются человек (и другие биологические объекты) и различные технические устройства (компьютер можно приспособить для управления любым оборудованием, были бы датчики и исполнительные устройства). В какую форму эти устройства преобразуют двоичную информацию – определяется их назначением.

Коммуникационные устройства служат для передачи информации между компьютерами и/или их частями. Сюда относят модемы (проводные, радио, оптические, инфракрасные и т.д.), адаптеры локальных и глобальных сетей. В данном случае преобразование формы представления информации требуется только для передачи ее на расстояние. Процессор, память и периферийные устройства взаимодействуют между собой с помощью шин и интерфейсов (аппаратных и программных), стандартизация интерфейсов делает архитектуру компьютеров открытой.

    1. Устройства ввода-вывода и коммуникаций

Устройства ввода-вывода связывают компьютер с внешним миром, без них он был бы «вещью в себе». Список устройств, делающих компьютер «вещью для нас», практически не ограничен. К ним относятся дисплеи (устройства отображения, то есть вывода), клавиатура и мышь (устройства ввода), принтеры и сканеры, плоттеры и дигитайзеры, джойстики, акустические системы и микрофоны, телевизоры и видеокамеры и прочие устройства в великом множестве их разновидностей. Любопытно, что в этих парах обычно лидируют устройства вывода, появившиеся в компьютерах раньше соответствующих устройств ввода.


Благодаря фантазии и техническому прогрессу появляются все новые и новые устройства; так, например, шлем виртуальной реальности из области фантастики перешел в производственно-коммерческую область. К компьютеру можно подключать датчики и исполнительные устройства технологического оборудования, различные приборы – в общем, все, что в итоге может вырабатывать электрические сигналы и/или ими управляться.

Коммуникационные устройства связывают компьютеры (и другие устройства) в сложные системы, составные части которых могут находиться довольно далеко друг от друга. Коммуникационные устройства обеспечивают передачу информации самого разного назначения. К этим устройствам относятся модемы, адаптеры локальных и глобальных сетей. Соответствующий набор устройств ввода-вывода и коммуникаций позволяет превратить персональный компьютер, например, в факс-машину, аппарат IP-телефонии (голосовой) или видео-конференцсвязи.

Глава 2. Адаптеры, контроллеры и иерархия подключений периферийных устройств.

Компоненты компьютера соединяются друг с другом иерархией средств подключения, наверху которой стоят интерфейсы системного уровня подключения. Для этой группы интерфейсов характерно то, что в их транзакциях фигурируют физические адреса пространства памяти и (если есть) пространства ввода-вывода. Группа связанных между собой интерфейсов системного уровня образует логическую системную шину компьютера. Системную шину составляют следующие физические интерфейсы:

  • шина подключения центрального процессора (или нескольких процессоров в сложных системах) – FSB (Front Side Bus – фасадная шина);

  • шина подключения контроллеров памяти, оперативной и постоянной; собственно шина памяти (memory bus) системной уже не является, поскольку в ней фигурируют не системные адреса, а адреса физических банков памяти;

  • шины ввода-вывода, обеспечивающие связь между центральной частью компьютера и периферийными устройствами.

Типичные представители шин ввода-вывода в IBM PC – шина ISA (отмирающая), а также шины PCI (развивающаяся в PCI-X) и PCI-E (PCI Express). Через шины ввода-вывода проходят все обращения центрального процессора (ЦП) к периферии. К шинам ввода-вывода подключаются контроллеры и адаптеры периферийных устройств или их интерфейсов.