Добавлен: 09.11.2023
Просмотров: 24
Скачиваний: 3
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ
Федеральное государственное автономное образовательное учреждение высшего образования «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина»
Кафедра радиоэлектроники и телекоммуникаций
РЕФЕРАТ
по дисциплине: «Введение в специальность»
на тему: Строение персональных компьютеров IBM PC
Выполнила студентка 1-го курса РИ-121121
Селифанова Элина Нажмутдиновна
Проверил:
Профессор, Доктор технических наук
Иванов Вячеслав Элизбарович
Содержание
Введение……………………………………………………………………....3
Глава 1. Общая структура персонального компьютера………….………...4
1.1. Центральный процессор CPU………………………..……..............4
1.2. Элементы памяти …………………………………………...............5
1.3. Периферийные устройства…………………..……………………..6
1.4. Устройства ввода-вывода и коммуникаций……………….............7
Глава 2. Адаптеры, контроллеры и иерархия подключений периферийных устройств ……………………………………………………………………..8
Заключение………………………………………………………………..…11
Список использованной литературы……………………………………....12
Введение
Распространение персональных компьютеров к концу 70-х годов привело к некоторому снижению спроса на большие ЭВМ и мини ЭВМ. Это стало предметом серьезного беспокойства фирмы IBM (International Bussines Machines Corporation) - ведущей компании по производству больших ЭВМ, и в 1979 году фирма IBM решила попробовать свои силы на рынке персональных компьютеров.
Однако руководство фирмы недооценило будущую важность этого рынка и рассматривало создание компьютера всего лишь как мелкий эксперимент - что-то вроде одной из десятков проводившихся в фирме работ по созданию нового оборудования. Чтобы не тратить на этот эксперимент слишком много денег, руководство фирмы предоставило подразделению, ответственному за данный проект, невиданную в фирме свободу. В частности, ему было разрешено не конструировать персональный компьютер "с нуля", а использовать блоки, изготовленные другими фирмами. И это подразделение сполна использовало предоставленный шанс.
Прежде всего, в качестве основного микропроцессора компьютера был выбран новейший тогда 16-разрядный микропроцессор Intel-8088.Его использование позволило значительно увеличить потенциальные возможности компьютера, так как новый микропроцессор позволял работать с 1 Мбайтом памяти, а все имевшиеся тогда компьютеры были ограничены 64 Кбайтами. В компьютере были использованы и другие комплектующие различных фирм, а его программное обеспечение было поручено разработать небольшой фирме Microsoft.
В августе 1981 года новый компьютер под названием IBM PC был официально представлен публике и вскоре после этого он приобрел большую популярность у пользователей. Через один-два года компьютер IBM PC занял ведущее место на рынке, вытеснив модели 8-битовых компьютеров. Фактически IBM PC стал стандартом персонального компьютера. Сейчас такие компьютеры ("совместимые с IBM PC") составляют около 90% всех производимых в мире персональных компьютеров.
Глава 1. Основные блоки IBM PC
Любой IBM PC-совместимый компьютер представляет собой реализацию так называемой фон-неймановской архитектуры вычислительных машин. Эта архитектура была представлена Джорджем фон Нейманом (George von Neumann) еще в 1945 году и имеет следующие основные признаки.
Машины состоят из трёх частей (блоков):
-
блока управления; -
арифметико-логического устройства (АЛУ); -
памяти; -
устройств ввода-вывода;
В ней реализуется концепция хранимой программы: программы и данные хранятся в одной и той же памяти. Выполняемые действия определяются блоком управления и АЛУ, которые вместе являются основой центрального процессора.
Фон-неймановская архитектура – не единственный вариант построения ЭВМ, есть и другие, которые не соответствуют указанным принципам (например, потоковые машины). Однако подавляющее большинство современных компьютеров основаны именно на указанных принципах, включая и сложные многопроцессорные комплексы, которые можно рассматривать как объединение фон-неймановских машин. Конечно же, за более чем полувековую историю ЭВМ классическая архитектура прошла длинный путь развития. Тем не менее ПК можно «разложить по полочкам» следующим образом.
-
Центральный процессор CPU
Центральный процессор выбирает и исполняет команды из памяти последовательно, адрес очередной команды задается «счетчиком адреса» в блоке управления. Этот принцип исполнения называется последовательной передачей управления. Данные, с которыми работает программа, могут включать переменные – именованные области памяти, в которых сохраняются значения с целью дальнейшего использования в программе.
Центральный процессор (АЛУ с блоком управления) реализуется микропроцессором семейства х86 – от 8086/88 до новейших процессоров Pentium, Athlon и Opteron (и это не конец истории). При всей внутренней суперскалярности и суперконвейеризированности современного процессора внешне он соблюдает вышеупомянутый принцип последовательной передачи управления.
Набор арифметических, логических и прочих инструкций насчитывает несколько сотен, а для потоковой обработки придуман принцип SIMD (Single Instruction Multiple Data – множество комплектов данных, обрабатываемых одной инструкцией), по которому работают расширения ММХ, 3DNow!, SSE.
Процессор имеет набор регистров, часть которых доступна для хранения операндов, выполнения действий над ними и формирования адреса инструкций и операндов в памяти. Другая часть регистров используется процессором для служебных (системных) целей, доступ к ним может быть ограничен (есть даже программно-невидимые регистры).
Все компоненты компьютера представляются для процессора в виде наборов ячеек памяти или/и портов ввода-вывода, в которые процессор может записывать и/или из которых может считывать содержимое.
-
Элементы памяти
Память «расползлась» по многим компонентам. Оперативная память (ОЗУ) – самый большой массив ячеек памяти со смежными адресами – реализуется, как правило, на модулях (микросхемах) динамической памяти. Для повышения производительности обмена данными (включая и считывание команд) оперативная память кэшируется сверхоперативной памятью. Два уровня кэширования территориально располагаются в микропроцессоре. Оперативная память вместе с кэшем всех уровней (в настоящее время – до трех) представляет собой единый массив памяти, непосредственно доступный процессору для записи и чтения данных, а также считывания программного кода.
Помимо оперативной память включает также постоянную (ПЗУ), из которой можно только считывать команды и данные, и некоторые виды специальной памяти (например, видеопамять графического адаптера). Вся эта память (вместе с оперативной) располагается в едином пространстве с линейной адресацией. В любом компьютере обязательно есть энергонезависимая память, в которой хранится программа начального запуска компьютера и минимально необходимый набор сервисов (ROM BIOS).
Процессор (один или несколько), память и необходимые элементы, связывающие их между собой и с другими устройствами, называют центральной частью, или ядром, компьютера (или просто центром). То, что в фон-неймановском компьютере называлось устройствами ввода-вывода (УВВ), удобнее называть периферийными устройствами.
-
Периферийные устройства
Периферийные устройства (ПУ) – это все программно-доступные компоненты компьютера, не попавшие в его центральную часть. Их можно разделить по назначению на несколько классов:
Устройства хранения данных (устройства внешней памяти) – дисковые (магнитные, оптические, магнитооптические), ленточные (стримеры), твердотельные (карты, модули и USB-устройства на флэш-памяти). Эти устройства используются для сохранения информации, находящейся в памяти, на энергонезависимых носителях и загрузки этой информации в оперативную память. В каком виде хранится информация на этих устройствах, нам не так уж важно (главное – правильно считать то, что сохранили).
Устройства ввода-вывода служат для преобразования информации из внутреннего представления компьютера (биты и байты) в форму, понятную окружающим, и обратно. Под окружающими подразумеваются человек (и другие биологические объекты) и различные технические устройства (компьютер можно приспособить для управления любым оборудованием, были бы датчики и исполнительные устройства). В какую форму эти устройства преобразуют двоичную информацию – определяется их назначением.
Коммуникационные устройства служат для передачи информации между компьютерами и/или их частями. Сюда относят модемы (проводные, радио, оптические, инфракрасные и т.д.), адаптеры локальных и глобальных сетей. В данном случае преобразование формы представления информации требуется только для передачи ее на расстояние. Процессор, память и периферийные устройства взаимодействуют между собой с помощью шин и интерфейсов (аппаратных и программных), стандартизация интерфейсов делает архитектуру компьютеров открытой.
-
Устройства ввода-вывода и коммуникаций
Устройства ввода-вывода связывают компьютер с внешним миром, без них он был бы «вещью в себе». Список устройств, делающих компьютер «вещью для нас», практически не ограничен. К ним относятся дисплеи (устройства отображения, то есть вывода), клавиатура и мышь (устройства ввода), принтеры и сканеры, плоттеры и дигитайзеры, джойстики, акустические системы и микрофоны, телевизоры и видеокамеры и прочие устройства в великом множестве их разновидностей. Любопытно, что в этих парах обычно лидируют устройства вывода, появившиеся в компьютерах раньше соответствующих устройств ввода.
Благодаря фантазии и техническому прогрессу появляются все новые и новые устройства; так, например, шлем виртуальной реальности из области фантастики перешел в производственно-коммерческую область. К компьютеру можно подключать датчики и исполнительные устройства технологического оборудования, различные приборы – в общем, все, что в итоге может вырабатывать электрические сигналы и/или ими управляться.
Коммуникационные устройства связывают компьютеры (и другие устройства) в сложные системы, составные части которых могут находиться довольно далеко друг от друга. Коммуникационные устройства обеспечивают передачу информации самого разного назначения. К этим устройствам относятся модемы, адаптеры локальных и глобальных сетей. Соответствующий набор устройств ввода-вывода и коммуникаций позволяет превратить персональный компьютер, например, в факс-машину, аппарат IP-телефонии (голосовой) или видео-конференцсвязи.
Глава 2. Адаптеры, контроллеры и иерархия подключений периферийных устройств.
Компоненты компьютера соединяются друг с другом иерархией средств подключения, наверху которой стоят интерфейсы системного уровня подключения. Для этой группы интерфейсов характерно то, что в их транзакциях фигурируют физические адреса пространства памяти и (если есть) пространства ввода-вывода. Группа связанных между собой интерфейсов системного уровня образует логическую системную шину компьютера. Системную шину составляют следующие физические интерфейсы:
-
шина подключения центрального процессора (или нескольких процессоров в сложных системах) – FSB (Front Side Bus – фасадная шина); -
шина подключения контроллеров памяти, оперативной и постоянной; собственно шина памяти (memory bus) системной уже не является, поскольку в ней фигурируют не системные адреса, а адреса физических банков памяти; -
шины ввода-вывода, обеспечивающие связь между центральной частью компьютера и периферийными устройствами.
Типичные представители шин ввода-вывода в IBM PC – шина ISA (отмирающая), а также шины PCI (развивающаяся в PCI-X) и PCI-E (PCI Express). Через шины ввода-вывода проходят все обращения центрального процессора (ЦП) к периферии. К шинам ввода-вывода подключаются контроллеры и адаптеры периферийных устройств или их интерфейсов.