Файл: Содержание Введение 2 Проблема увеличения объема диска 30 Устройство чтения компактдисков (cdrom) 31 dvd 32 Другие устройства накопления и хранения информации .doc

ВУЗ: Не указан

Категория: Реферат

Дисциплина: Не указана

Добавлен: 10.11.2023

Просмотров: 52

Скачиваний: 3

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Содержание FAT Таблица 4

Номер элемента FAT


Номер кластера, статус которого отображается


Расшифровка номера кластера


номер сектора


номер дорожки


номер стороны


2


2


4,5


0


1


3


3


6,7


0


1


4


4


8,9


0


1


5


5


1,2


1


0



…..


…….


…..


……..


………


Для дискет формата FF9 (DS/DD-9) количество кластеров равно 355d.

Статус занятого кластера содержит либо номер следующего кла­стера, в котором располагается файл, либо код последнего кластера файла FF8-FFF.

Место на диске, отводимое каждому файлу, состоит из последо­вательности (цепочки) кластеров. Номер первого кластера, в кото­ром начинается файл, указывается в корневом каталоге. В FAT элемент, соответствующий этому кластеру, содержит номер следу­ющего кластера, в котором находится продолжение файла, и так да­лее «по цепочке». Последний кластер файла обычно содержит FFF. Например, если файл разместился в 3, 17 и 25 кластерах диска, то в корневом каталоге для этого файла будет указано, что он разме­щается в кластере № 3. В элементе FAT, соответствующем третье­му кластеру, будет записан номер следующего кластера (17), в эле­менте FAT, соответствующем кластеру 17, будет содержаться номер следующего кластера — 25, а в элементе FAT, соответству­ющем кластеру № 25, будет записан код последнего кластера - обыч­но FFF.

Корневой каталог диска содержит информацию о файлах и подка­талогах, размещенных на диске.

Каждый файл в каталоге описан с помощью 32 байт, образующих элемент (строку) каталога. Каждый сектор каталога содержит 512/ 32 = 16 строк. В одной из них (обычно в первой) может быть записано имя диска (метка тома).



Структура каталога приведена в табл. 5.

Таблица 5 Структура каталога

Относительный адрес

Размер поля


Описание


0

8

Имя файла

8

3

Расширение имени (тип файла)

11


1


Атрибут


12


10


Резервное поле (нули)


22


2


Время создания файла


24


2


Дата создания файла


26


2


Номер начального кластера файла


28


4


Длина файла



Имя файла и его расширение записываются в кодах ASCII. При записи имени диска эти два поля объединяются, т.е. метка тома мо­жет содержать 11 символов. Неиспользованные байты первых двух полей заполняются символами «пробел». Первый байт поля имени файла используется для обозначения стертых файлов (Нех.код 'Е5') и свободных строк в каталоге ('00').

Байт атрибута файла может принимать следующие шестнадцатеричные значения:

01 — файл только для чтения;

02 — скрытый файл;

04 — системный файл;

08 — имя диска;

10 — подкаталог;

20 — архив.

Скрытые и системные файлы недоступны для вводимых с клавиа­туры команд DOS (например, для команды DIR). Подкаталоги функ­ционируют на правах обычных файлов.

Время и дата создания файла рассчитываются по формулам

время = час х 2048 + минуты х 32 + секунды; дата = ( год — 1980) х 512 + месяц х 64 + день.

Длина файла представлена в байтах.

Параметры каталога: время, дата, номер первого кластера, длина файла записываются, начиная с младшего байта. Например, при длине файла 513d байт (20 lh) запись в поле данных катало­га будет выглядеть так: 01 02 00 00. Читать эту запись надо побайт­но, справа налево.

Пример размещения двух файлов в корневом каталоге и в FAT приведен на рис. 4.

    1. 1   2   3   4


Накопитель на жестком магнитном диске


Накопитель на жестком магнитном диске (НМД) имеет тот же принцип действия, что и НГМД, но отличается тем, что в нем магнит­ный носитель информации является несъемным и состоит из несколь­ких пластин, закрепленных на общей оси (пакета магнитных носите­лей).

Каждую рабочую поверхность такой конструкции обслуживает своя головка. Если в НГМД головка во время работы соприкасается с поверхностью дискеты, то в НМД головки во время работы нахо­дятся на небольшом расстоянии от поверхности (десятые доли микро­на). При устранении контакта головки с поверхностью диска появи­лась возможность увеличить скорость вращения дисков, а следова­тельно, повысить быстродействие внешнего ЗУ





Рис. 4. Пример размещения двух файлов: а — в FAT; 6 — в корневом каталоге
Запись и чтение информации на жестком магнитном диске произ­водятся с помощью магнитных головок, которые во время чтения-записи неподвижны. Магнитное покрытие каждой поверхности диска во время чтения-записи перемещается относительно головки. Магнитный «след» на поверхности диска, образовавшийся при работе голов­ки на запись, образует кольцевую траекторию — дорожку (trek). До­рожки, расположенные друг под другом на всех рабочих поверхнос­тях магнитного носителя, называются цилиндром.

В жестких МД различных фирм используются разные материалы для магнитного покрытия: диски ранних конструкций имели оксидное покрытие (окись железа), современные диски — кобальтовое по­крытие. Оксидное покрытие наносилось на поверхность диска в виде магнитного лака, который после высыхания образовывал довольно толстый магнитный слой. Обеспечить устойчивую запись в таком слое можно было за счет длительного воздействия электромагнитным по­лем. Поэтому магнитные «следы» на поверхности диска получались большого размера, что приводило к невысокой плотности записи и низкому быстродействию. Для увеличения емкости магнитного дис­ка приходилось увеличивать его размеры.

Кобальтовое покрытие наносится на поверхность диска мето­дом напыления. При этом образуется тонкая магнитная пленка, на которую легче воздействовать для образования магнитных следов. Размеры магнитных следов уменьшились, что позволило увеличить продольную и поперечную плотности записи. Увеличение продоль­ной плотности записи позволило увеличить емкость дорожки, а уве­личение поперечной плотности записи — количество дорожек на по­верхности диска. Диски той же емкости уменьшились в раз­мерах.


Стандарт на физическое размещение информации на жестком маг­нитном диске мягче, чем для НГМД, так как гибкие диски должны читаться одинаково на дисководах разных фирм, в то время как жес­ткий магнитный диск имеет встроенную в него систему управления. При работе с жестким магнитным диском встроенная система управ­ления решает вопросы физического размещения информации и зачас­тую недоступна для внешнего вмешательства. Например, наружные и внутренние дорожки магнитного диска имеют разную длину. Если их сделать одинаковой емкости и писать информацию с одинаковой плотностью записи, то на наружных дорожках остается много сво­бодного места. Некоторые фирмы при изготовлении жестких дисков делают дорожки различной емкости. Но, для того чтобы стандарт­ные операционные системы могли работать с такими дисками, встро­енный в них контроллер осуществляет пересчет адресов; при этом фи­зически на диске имеется меньшее количество дорожек, чем кажется операционной системе (так как операционная система настроена на работу с дорожками одинаковой емкости).

Количество дисков, каждый из которых имеет по две рабочие по­верхности, в накопителе может быть от 3 до 10 и более. В некоторых накопителях две крайние поверхности пакета (верхняя и нижняя) не являются рабочими — при этом сокращается размер дисковода (и емкость тоже). Иногда эти поверхности используются для размеще­ния служебной информации.

Жесткие диски делают герметичными — малое расстояние (зазор) между рабочей поверхностью и магнитной головкой должно быть за­щищено от пылинок, чтобы уберечь тонкий напыленный слой кобаль­та от стирания. Магнитная головка во время работы не должна ка­саться поверхности диска и в то же время должна находиться от нее на расстоянии в доли микрона. Наиболее распространенный способ удовлетворения обоих условий — применение «воздушной подушки»: в магнитной головке делаются отверстия, через которые в рабочий зазор в направлении магнитного диска нагнетается сжатый воз­дух — он и является демпфером (воздушной подушкой), не позво­ляющим магнитной головке «прижаться» к поверхности диска. Воздух перед нагнетанием в зазоры проходит тщательную очистку от пыли с помощью специальных фильтров.

Магнитные головки при работе НМД могут перемещаться, настра­иваясь на требуемую дорожку.

Перед началом эксплуатации пакет магнитных дисков формати­руется: на нем размечаются дорожки (ставится маркер начала до­рожки и записывается ее номер), наносятся служебные зоны секто­ров на дорожках. Для записи-чтения информации контроллеру НМД передается адрес: номер цилиндра, номер рабочей поверхности цилиндра, номер сектора на выбранной дорожке. На основании этого магнитные головки перемещаются к нужному цилиндру, ожи­дают появления маркера в начале дорожки и появления требуемого сектора, после чего записывают или читают информацию из него. Несмотря на то что все магнитные головки установлены на требуе­мый цилиндр, работает в каждый данный момент только одна го­ловка.


Из-за малого расстояния между секторами и высокой скорости вращения пакета дисков схемы управления не всегда успевают пере­ключиться на чтение-запись следующего сектора (если считываемые-записываемые сектора следуют один за одним). В этом случае после обработки одного сектора приходится ожидать, пока диск сделает целый оборот и к головкам подойдет требуемый сектор. Чтобы избе­жать этого, при форматировании используется чередование (interleaving) секторов: последовательность нумерации секторов на дорожке задается таким образом, что следующий по порядку номер сектора принадлежит не следующему по физическому размещению сектору, а через «k» секторов (где kфактор чередования). Фактор чередования при форматировании задается таким образом, чтобы си­стема управления НМД обеспечила обработку с последовательными номерами без длительного ожидания (слишком маленький kприводит к «проскакиванию» требуемого сектора и ожиданию нового витка, слишком большое значение kтакже приводит к ожиданию, так как схема управления уже отработала, а требуемый сектор все еще не подошел к головке).

Поскольку физически НМД различных фирм могут быть устрое­ны по-разному, возникает проблема совместимости НМД с микро­процессорным комплектом ЭВМ. Проблема эта решается с помощью стандартизации интерфейсов для накопителей на жестких магнитных дисках.

Основной характеристикой НМД является их емкость, которая в наибольшей степени зависит от плотности записи, в свою очередь в значительной степени зависящей от уровня технологии. Наиболее ре­зультативным для повышения плотности записи явилось применение магниторезистивных головок, которые известны и применяются уже давно, но по-настоящему массовой продукцией долгое время не были, из-за большой капиталоемкости их производства. Кроме увеличения емкости диска, повышение плотности записи приводит и к увеличе­нию скорости считывания-записи данных при неизменных диаметре и скорости вращения носителя.

Доступный сейчас уровень технологии позволяет за счет исполь­зования магниторезистивных головок производить на 3.5" НМД с ин­терфейсами EIDE и SCSI накопители емкостью 1,25; 1,7 и более Гбайтов и ставит на повестку дня увеличение их емкости до 64 Гбайт. Скорость передачи данных при использовании магниторезистивных головок возросла с обычной 3—5 Мбайт/с до 25 Мбайт/с.


    1. Стриммер

Стриммером