Файл: Малые тела Солнечной системы астероиды, карликовые планеты, кометы.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 10.11.2023

Просмотров: 255

Скачиваний: 12

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Изменения орбит не являются единственной возможной причиной исчезновения комет. Достоверно установлено, что кометы быстро разрушаются. Яркость короткопериодических комет ослабевает со временем, а в некоторых случаях процесс разрушения наблюдался почти непосредственно. Классическим примером является комета Биэли. Она была открыта в 1772 году и наблюдалась в 1813г., 1826г.,1832г. В 1845 году размеры кометы оказались увеличенными, а в январе 1846 года наблюдатели с удивлением обнаружили две очень близкие кометы вместо одной. Били вычислены относительные движения обеих комет, и оказалось, что комета Биэли разделилась на две ещё около года назад, но вначале компоненты проектировались один на другой, и разделение было замечено не сразу. Комета Биэли наблюдалась ещё один раз, причём один компонент много слабее другого, и больше её найти не удалось. Зато неоднократно наблюдался метеорный поток, орбита которого совпадала с орбитой кометы Биэли.

При решении вопроса о происхождении комет нельзя обойтись без знания химического состава вещества, из которого сложено кометное ядро. Казалось бы, что может быть проще? Нужно сфотографировать побольше спектров комет, расшифровать их – и химический состав кометных ядер нам сразу же станет известным. Однако дело обстоит не так просто, как кажется на первый взгляд. Спектр фотометрического ядра может быть просто отражённым солнечным или эмиссионным молекулярным спектром. Отражённый солнечный спектр является непрерывным и ничего не сообщает о химическом составе той области, от которой он отразился – ядра или пылевой атмосферы, окружающей ядро. Эмиссионный газовый спектр несёт информацию о химическом составе газовой атмосферы, окружающей ядро, и тоже ничего не говорит нам о химическом составе поверхностного слоя ядра, так как излучающие в видимой области молекулы, такие как C2, CN, CH, MH, OH и др., являются вторичными, дочерними молекулами – «обломками» более сложных молекул или молекулярных комплексов, из которых складывается кометное ядро. Эти сложные родительские молекулы, испаряясь в околоядерное пространство, быстро подвергаются разрушительному действию солнечного ветра и фотонов или распадаются, или диссоциируются на более простых молекулах, эмиссионные спектры которых и удаётся наблюдать от комет. Сами родительские молекулы дают непрерывный спектр.


Но бывают кометы и непериодические – они улетают и не возвращаются, а некоторые падают на Солнце и сгорают. Хвост кометы можно наблюдать только в тёмную ночь. Ядро выглядит как более или менее яркая звезда, которая за несколько дней пересекает небо.

В Солнечной системе, по-видимому, сотни миллиардов комет, но лишь немногие доступны наблюдению с Земли. Редкое и необычное зрелище, кометы издавна привлекали внимание людей. В древности их появление считали дурным предзнаменованием. В наши дни обнаружение комет популярно у астрономов-любителей; комету называют в честь первооткрывателей.

2.1.Исследование комет

Проект «Вега» был одним из самых сложных в истории исследований Солнечной системы при помощи космических аппаратов. Он состоял из трёх частей: изучение атмосферы и поверхности Венеры при помощи посадочных аппаратов, изучение динамика атмосферы Венеры посредствам аэростатных зондов (аэростаты были впервые в мире запущены в атмосферу с другой планеты), пролёт через газопылевую атмосферу (кому) и плазменную оболочку кометы Галлея.

Автоматическая межпланетная станция «Вега-1» стартовала с космодрома Байконур 15 декабря 1984г. Через 6 дней за ней последовала «Вега-2». Курс был взят на планету Венера. В июне 1985г. Они друг за другом прошли вблизи Венеры. Перед пролетом планеты от них отделились спускаемые аппараты, которые вошли на второй космической скорости, а атмосферу Венеры, и каждый из них разделился на две части – посадочный аппарат и аэростатный зонд. С помощью посадочного аппарата была проведена серия экспериментов по исследованию атмосферы и поверхности планеты. Аэростатные зонды дрейфовали на высоте около 54 километров, и в течение двух суток их перемещение фиксировалось сетью наземных радиотелескопов. Успешно были выполнены первые две части программы, посвященные исследованиям Венеры.

Но самой интересной была все же третья часть проекта-исследования кометы Галлея. Это небесное тело оставило глубокий след в памяти человечества, на протяжении 2-х тысячелетий около тридцати раз приблизившись к Солнцу. А, начиная со смелой гипотезы, выдвинутой Э.Галлеем, оно было объектом систематических исследований в астрономии. Неумолимой логикой космической эры и кометы должны были стать объектами прямых исследований. Космическим аппаратом впервые предстояло «увидеть» ядро кометы, неуловимое для наземных телескопов. Встреча «Веги-1» с кометой произошло 6 марта, а «Веги-2» - 9 марта 1986г. Они прошли на расстоянии 8900 8000 километров от её ядра.



Проект был осуществлён при широкой международной кооперации и с участием научных организаций многих стран.

К комете Галлея кроме «Веги-1» и «Веги-2», к ней направились и другие космические аппараты – «Джотто», снаряженный Европейским космическим агентством, и два маленьких японских аппарата «Суисей» («Комета») и «Сакигаке» («Пионер»).

Возрос интерес к кометным исследованиям. За последние 20 лет СССР и США направили к планетам более 30 межпланетных автоматических станций. Их полёты расширяли представления о планетах и их спутниках. Но пришла пора вспомнить и о других членах семьи, в частности о кометах.

Кометы – это гости, прибывшие с очень далеких окраин Солнечной системы. Предполагается, что около 100 млрд. комет постоянно находятся в кометном облаке, окружающем Солнце на расстоянии, в 10 тысяч раз больше, чем от Солнца до Земли. Судьба их различна. Большинство их остаётся миллиарды лет, некоторые покидают Солнечную систему, а некоторые переходят, а её внутреннюю часть и даже попадают на орбиты с относительно небольшим периодом, подобно комете Галлея.

Кометное облако, по-видимому, образовалось вместе с Солнечной системой. В этом случае, исследуя вещество комет, мы получим сведения о первичном материале, из которого 4,5 миллиарда лет назад сформировались планеты и спутники.

В свойствах комет много загадочного. Кометы становятся хорошо видимыми, когда они приближаются к Солнцу на расстоянии, примерно втрое большее, чем радиус земной орбиты. Она в начале выглядит как круглое светлое пятнышко (голова или кома), потом в сторону от Солнца вытягивается хвост. В самом центре головы находится невидимое тело, которое называется ядро. В ядре сосредоточена вся масса кометы. Главной особенностью ядра является то, что оно содержит много «летучего», то есть легкоиспаряющегося вещества. Это обычный водный лёд с вкраплением других молекул. Летучий материал перемешан с тугоплавкими частицами – силикатными, углистыми, металлическими. По мере приближения к Солнцу испарение льда идёт все сильнее и сильнее, потоки газа покидают ядро, увлекая за собой пыль. Как будто бы многое ясно, но до сих пор не было ответа на главный вопрос – какова физическая структура ядра кометы, единое ли это тело, рой из многих тел, связанных тяготением или просто летящих рядом. Ученые отдавали предпочтения первой модели, но не было оснований решительно отвергать и другие.

Поэтому самой важной задачей в проекте «Вега» было исследование физических характеристик ядра кометы. Кометные ядра наблюдались ранее с Земли, но только как звёздообразные объекты (далеко за орбитой Юпитера, когда активность отсутствует), да и таких наблюдений очень мало.


В проекте «Вега» впервые ядро кометы исследовалось как пространственно разрешенный объект, определены его строение, размеры, инфракрасная температура, получены оценки его состава и характеристика поверхностного слоя.

Мы не имели, и долго ещё не будем иметь технической возможности совершить посадку аппарата на ядро кометы. Слишком велики скорости встречи – в случае кометы Галлея это 78 км\с. Опасно и пролетать на слишком близком расстоянии, так как кометная пыль очень опасна для космического аппарата. Расстояние пролета чуть меньше 10000 км было выбрано с учетом существовавших ранее представлений о количественных характеристик кометной пыли. Использовалось два подхода: во-первых, дистанционные измерения при помощи оптических приборов и, во-вторых, прямые измерения вещества (газа и пыли), покидающего ядро и пересекающего траекторию, по которой движется аппарат.

Оптические приборы были размещены на специальной платформе, которая поворачивалась во время полета и автоматически отслеживал направление на ядро. Эта платформа была разработана совместно с чехословацкими и советскими специалистами и изготовлена в ЧССР. Три научных эксперимента выполнялись при помощи приборов, установленных на платформе. Один из них – это телевизионная съемка ядра.

Другой прибор – это инфракрасный спектрометр ИКС, при помощи которого одновременно проводилось два разных эксперимента – измерялись поток инфракрасного излучения от ядра (тем самым определялась температура его поверхности) и спектр инфракрасного излучения внутренних «околоядерных» частей комы на длинах волн от 2,5 до 12 микрометров с целью определения и её состава.

Итоги исследований ядра кометы Галлея, проведённых при помощи оптических приборов, можно сформулировать следующим образом – это монолитное тело, вытянутое, форма не правильная, размеры 14 км большой оси, около 7 км в поперечнике. Каждые сутки его покидает несколько миллионов тонн водяного пара. Вычисления показывают, что такая «производительность» требует, чтобы испарение шло по всей поверхности. Этим свойством могла бы обладать поверхность ледяного тела. Но вместе с тем приборы, «Веги» установили, что она черная (отражательная способность менее 5%) и горячая (примерно 100 тыс. град. Цельсия).

Важные данные о составе ядра получены при помощи прямых измерений химического состава пыли, газа и плазмы в коме вдоль траектории полета. Эти измерения показали, что по относительному содержанию в потоке газа, уходящего от кометы, больше всего водяного пара, но есть также много других компонентов – атомных (водород, кислород, углерод) и молекулярных (моноокись и двуокись углерода, гидроксил, циан и другие). Особый интерес представляет вопрос о том, какие молекулы принадлежат к числу «родительских», то есть входящих непосредственно в состав ядра. По-видимому, среди них главные – вода и углекислота, но многое указывает и на присутствие в ядре других молекул, в том числе и органических.


Вещество ядра, скорее всего, представляет собой так называемый «клатрат», то есть обычный водный лед, в кристаллическую решетку которого «вкраплены» другие молекулы. С клатратом перемешаны частицы метеоритного состава, каменистые и металлические. Химический состав твердых частиц, которые входили в состав ядра, оказался очень сложным и не однородным. Есть частицы с преобладанием металлов, таких, как натрий, магний, кальций, железо и других, с примесью силикатов. Наконец, есть пылинки, в которых присутствует значительное количество углерода. Наличие разнородных пылинок указывает на сложную тепловую историю первичного материала Солнечной системы.

В результате экспедиции «Вега» ученые впервые увидели кометное ядро, получили большой объём данных о его составе и физических характеристик. Грубая схема заменена картиной реального природного объекта, ранее никогда не наблюдавшегося. Внешне он несколько напоминает спутники Марса-Фобос и Деймос, но ещё более близким аналогом могут оказаться некоторые малые спутники Сатурна и Урана. Гипотеза, предполагает, что кометные ядра образовались сравнительно от Солнца, примерно там, где находятся планеты-гиганты от Юпитера до Нептуна, и были отброшены на большие расстояния при формировании этих планет. Эксперименты с пылевыми счетчиками показали, что около миллиона тонн космической пыли покидает кометное ядро ежесекундно.

Газ, испаряющийся с ядра кометы и распространяющийся в межпланетную среду со скоростью около 1 км/сек., в конечном счете полностью ионизируется солнечным излучением.

В результате возникает гигантское плазменное образование размером около 1 миллиона км. Перед кометой в сверх звуковом потоке солнечной плазы образуется своеобразная ударная волна, не похожая по своей структуре на ударные волны перед Землёй и другими планетами. Прямые измерения плазмы и плазменных волн во внутренней части комы могут понять особенности образования плазмы и излучения газа не только в кометах, но и в ряде других атмосферных объектов, в которых взаимодействие плазм играет большую роль.
2.2. Влияние солнечного ветра
Солнечный ветер – непрерывный поток плазмы солнечного происхождения, распространяющийся приблизительно радиально от Солнца и заполняющий собой Солнечную систему до гелиоцентрический расстояний порядка 100 а.е. Солнечный ветер образуется при газодинамическом расширении солнечной короны в межпланетное пространство.