Файл: Эксплуатационные повреждения и технология ремонта гребных винтов судов проекта Сормовский 488.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 23.11.2023
Просмотров: 289
Скачиваний: 5
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Диаметр гребного винта:
Диаметр гребного винта определяется по диаметру окружности, которую описывают концы лопастей, расположенных на движителе. В зависимости от размеров судна, для которых они предназначены, размер диаметра может колебаться от нескольких десятков сантиметров до 5 метров.
«Гигантами» последнего типа обычно оборудуют океанские лайнеры, для приведения в движение которых требуются значительные размеры винтов и затраты соответствующих физических сил.
Интерцептор гребного винта:
Название этой части конструкции переводится как «захватчик» и полностью его оправдывает. Интерцептор – это загнутая кромка, расположенная по исходящей траектории лопасти на гребном винте, а ее основное предназначение состоит в повышении способности движителя к захвату жидкости. Наличие интерцептора весьма актуально на судах, где мотор установлен очень высоко и ходовой дифферент имеет большие углы.
Также установка «захватчика» позволяет:
– дополнительно поднять нос судна, если он установлен на линиях угла наклона лопастей;
– повысить шаг лопасти при установке его на внешней и исходящей кромках.
Важный нюанс: установка интерцептора уменьшает количество оборотов винта в среднем на 200-400 в минуту, что требует соответствующего снижения шага в среднем на 1-2 дюйма.
Другие важные параметры и показатели работы гребного винта:
От скорости вращения движителя зависит интенсивность хода судна, на котором он установлен, но и этот параметр имеет оптимальные показатели. В среднем это до 300 оборотов в минуту, для крупных лайнеров оптимальны показатели не выше 200. Обусловлено это тем, что высокие скорости увеличивают износ деталей двигателя, ощущающих наибольшую нагрузку, а это приводит к поломкам, незапланированным ремонтам или окончательному прихода в негодность дорогостоящего механизма.
Устанавливать ось вращения гребного винта рекомендуется в горизонтальной плоскости, это улучшает параметры его работы. При наличии наклона гребного вала возникает «косой» поток воды, обтекающий лопасти, в результате чего производительность движителя снижается, и чем выше этот угол, тем больше снижение КПД. Первые потери мощности ощутимы уже при появлении разницы в 10 градусов.
Особого внимания требует оснащение крупных и тяжелых водных судов, используемых в промышленности или обороне. Так, для танкеров, атомных ледоколов, авианосцев и прочих судов большого водоизмещения актуально наличие и возможность передачи высокой мощности. Для этого их оборудуют двух или трех вальными установками, а также устанавливают по несколько винтов. Чаще всего это 4 движителя, расположенные симметрично. Одним же из важных параметров винтов для арктических ледоколов считает прочность, т.к. они должны иметь возможность дробить толщи льда при движении не только вперед, но и назад.
Виды гребных винтов:
Видов гребных винтов очень много. Они могут изготовляться из разных материалов (сталь, бронза, латунь, чугун, пластмасса), иметь разную конструкцию (цельнолитую, со съемными или поворотными лопастями), а также другие принципиальные отличия, влияющие на их работу и, непосредственно, движение судна, на котором они установлены.
Еще один параметр различия гребных винтов – возможность управления углом атаки лопастей движителя. По этому принципу они разделяются на винты фиксированного шага и винты регулируемого шага.
Винты фиксированного шага:
Винты фиксированного шага (ВФШ) – это движители, которые имеют единственный и постоянный угол установки лопастей, что обусловлено способом их производства. Такие движители отливают цельными, поэтому они имеют небольшие габариты и вес. Устанавливают их преимущественно на машинах малого водоизмещения:
– любительских;
– маломерных;
– морских судах, предназначенных для торговли;
– кораблях, требующих увеличенной прочности винта и прочих.
Движение таких судов предполагает длительный ход в одном направлении, поэтому маневренность винтов фиксированного шага как основная характеристика отходит на второй план.
Разновидность данного механизма – винты со съемными лопастями. Их шаг остается фиксированным, но конструкция предполагает не литое изготовление, а крепление лопастей к диску движителя в одной позиции. Это дает возможность замены при поломке отдельных деталей (лопастей), а не всего устройства, и позволяет изготавливать прочные движители с большим диаметром, цельное литье которых достаточно затруднительно.
Винты регулируемого шага:
Винты регулируемого шага (ВРШ) предполагают возможность изменения поворота лопастей в ступице. Крепление составляющих винта производится таким образом, что благодаря особому приводу лопасти могут вращаться вокруг своей оси и, при необходимости, менять угол атаки. Достигается эта возможность приводом, известным как механизм изменения шага (МИШ).
Механизм изменения шага может быть:
– ручным;
– механическим;
– электромеханическим;
– гидравлическим;
– электрогидравлическим.
В состав механизма изменения шага (МИШ), за исключением ручного, входят: механизм поворота лопастей, размещаемый, как правило, в ступице винта; сервомотор, создающий усилия для поворота лопастей и располагаемый на участке между гребным валом и главным двигателем; обратная связь или устройство, показывающее величину нового шага винта.
В свою очередь, механизм поворота лопастей, являющийся составной частью механизма изменения шага, может быть:
– зубчатым – используется на винтах малых диаметров и на судах, не предполагающих развитие высоких мощностей;
– кривошипным – отличается высокой степенью надежности и прочности, применяется на напряженных конструкциях, высокооборотных винтах и пр.
Размещается механизм поворота лопастей внутри ступицы гребного винта, что отражается как на ее размерах, так и на габаритах самого винта.
Самым часто используемым приводом считается гидравлический привод управления винтами регулируемого шага. В нем поворот лопастей производится за счет воздействия жидкостей с малой вязкостью, а само устройство механизма отличается сравнительной простотой. Еще одно преимущество гидравлики – возможность создавать большие рабочие мощности даже на маленьких и легких движителях.
За счет управления винтом дистанционно, непосредственно с ходового мостика, облегчилась и координация движения самого судна. Применение же небольших, но мощных и крепких, движителей даже на габаритных судах улучшило их ходовые качества и маневренность, позволили скоординировать шаг винта с любой скоростью машины. В результате таких действий производительность гребного винта увеличивается в несколько раз, а это снижает общие затраты на эксплуатацию судна.
Преимущества и недостатки гребных винтов:
Несмотря на технические достижения, гребной винт не является идеальным механизмом. Так, его работа в качестве движителя возможна лишь при условии, что скорость его вращения будет постоянной или увеличивающейся, в противном случае лопасти, сталкиваясь с толщей воды, будут выполнять роль тормоза, причем достаточно активного.
Хотя теоретические расчеты коэффициента полезного действия движителя достигают показателей 75 %, он не способен достичь этих параметров, и они обычно находятся в пределах 30-50 %. Создать же идеальный винт с КПД в 100% невозможно, т.к. его работа зависит от условий окружающей среды, которые постоянно изменяются.
Интересный факт: хотя гребной винт значительно облегчил человеку управление водными судами и позволил двигаться на машинах значительных габаритов, его КПД все же уступает обыкновенным веслам, параметры которых достигают 60-65%. Если же сравнивать движитель с гребным колесом, то преимущество все же за механическим устройством (гребным колесом): его производительность выше, а габариты и вес – меньше. Однако в случае повреждения ремонт гребного колеса провести не только возможно, но и проще. Ремонт же цельнолитых гребных винтов невозможен, а сборных требует наличия соответствующего оборудования, навыков и проводится исключительно в условиях дока.
К преимуществам механического движителя (гребного колеса) стоит отнести его меньшую уязвимость, которую обеспечивают размеры и материал, их которого он изготовлен, т.е. ломаются они в несколько раз реже. При этом он более безопасен для жителей водного мира и оказавшихся за бортом людей. Что касается оборонной и военной промышленности, то здесь несомненное лидерство именно за гребными винтами. Так, помещение движителя под воду позволило использовать в военных целях всю поверхность имеющихся палуб, а также практически исключило возможность попадания по движителю снарядов неприятеля.
История изобретения и модернизации гребных винтов уходит корнями в глубокую древность, но лишь с развитием технического прогресса человечество смогло получить механизмы, прототипы которых используются по сей день. Однако эта отрасль промышленности продолжает совершенствоваться: ученые и изобретатели ищут сплавы и материалы для повышения производительности движителей и разрабатывают конструкции, способные устранить или уменьшить их недостатки.
Повреждения гребных винтов, возникающие в процессе эксплуатации
К характерным повреждениям гребных винтов относятся разъедание поверхности в результате коррозии и кавитационная коррозия, деформация, трещины или поломка лопастей от удара о плавающие предметы или при посадке на мель. гребной винт судно коррозия
Эрозионная коррозия. Обычно характеризуется образованием на поверхности в результате воздействия потока коррозионной среды канавок или впадин, чередующихся с возвышениями.
Кавитационная коррозия. В местах контакта жидкости с быстро движущимися твердыми объектами происходит локальное изменение давления. Если давление в какой-то точке падает ниже давления насыщенного пара, происходит нарушение целостности среды. Или, проще говоря, жидкость закипает. Затем, когда жидкость попадает в область с более высоким давлением, происходит «схлопывание» пузырьков пара, что сопровождается шумом, а также появлением микроскопических областей с очень высоким давлением (при соударении стенок пузырьков). Это приводит к разрушению лопастей гребного винта. Их как бы «разъедает».
Деформация происходит при ударе о мель или попадание посторонних объектов в момент работы гребного винта. Если удар был очень сильный, то также может возникнуть трещина, которая может привести к обрыву лопасти.
Рисунок 1.2 Разрушения гребных винтов: 1 - трещины; 2 - обрыв части лопасти; 3 - повреждение входящей кромки; 4 - трещины в околошовной зоне; 5 - выкрашивание кромок; 6 - эрозионные раковины
Определение возможных трещин мест зарождения на судовом винте
Для определения возможных трещин на месте зарождения судового винта можно использовать различные методы диагностики, такие как визуальный осмотр, ультразвуковая диагностика и магнитопорошковая диагностика. Визуальный осмотр является наиболее доступным методом диагностики и включает в себя внимательный осмотр поверхности винта в месте соединения с корпусом судна, чтобы обнаружить любые видимые трещины или другие дефекты. Ультразвуковая диагностика и магнитопорошковая диагностика являются более точными методами и могут использоваться для выявления скрытых трещин в материале. Однако, для более точной и полной диагностики рекомендуется использовать несколько методов одновременно..
При использовании методов ультразвуковой и магнитопорошковой диагностики для определения возможных трещин на месте зарождения судового винта, на поверхность винта наносят специальные растворы, которые при наличии трещин раскрасятся, позволяя визуально обнаружить дефекты. При использовании ультразвуковой диагностики, акустические волны проникают в материал винта и отражаются от внутренних дефектов, таких как трещины, что позволяет определить их точное местоположение и размер. Магнитопорошковая диагностика использует магнитное поле для обнаружения дефектов в материале, включая трещины и другие дефекты.
По результатам диагностики мест зарождения судового винта, а также других ориентировочных работ, предпринимаются меры по их исправлению или замене, что позволяет уменьшить риски для безопасной эксплуатации корабля. Кроме этого, производится регулярный контроль, проверка и обслуживание судового винта для предотвращения возможных деформаций и повреждений.