Файл: "Графическое решение уравнений и неравенств".docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 23.11.2023

Просмотров: 387

Скачиваний: 30

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Министерство образования и молодежной политики Ставропольского края

Государственное бюджетное профессиональное образовательное учреждение

Георгиевский региональный колледж «Интеграл»

ИНДИВИДУАЛЬНЫЙ ПРОЕКТ

По дисциплине « Математика: алгебра, начала математического анализа, геометрия»
На тему: “Графическое решение уравнений и неравенств”

Выполнил студент группы ПК-61, обучающийся по специальности

«Программирование в компьютерных системах»

Целлер Тимур Витальевич

Руководитель: преподаватель Серкова Н.А.

Дата сдачи: « » 2017г.

Дата защиты: « » 2017г.

Георгиевск 2017г.

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

ЦЕЛЬ ПРОЕКТА:

Цель: Выяснить преимущества графического способа решения уравнений и неравенств.

Задачи:

  • Сравнить аналитический и графический способ решения уравнений и неравенств.

  • Ознакомиться в каких случаях графический способ имеет преимущества.

  • Рассмотреть решение уравнений с модулем и параметром.

Актуальность исследования: Анализ материала, посвящённого графическому решению уравнений и неравенств в учебных пособиях «Алгебра и начала математического анализа» разных авторов, учёт целей изучения данной темы. Атак же обязательных результатов обучения, связанных с рассматриваемой темой.

Содержание
Введение

1. Уравнения с параметрами

1.1. Определения

1.2. Алгоритм решения

1.3. Примеры

2. Неравенства с параметрами

2.1. Определения

2.2. Алгоритм решения

2.3. Примеры

3. Применение графиков в решении уравнений

3.1. Графическое решение квадратного уравнения

3.2. Системы уравнений

3.3. Тригонометрические уравнения

4. Применение графиков в решении неравенств

5.Заключение

6. Список литературы

Введение

Изучение многих физических процессов и геометрических закономерностей часто приводит к решению задач с параметрами. Некоторые Вузы также включают в экзаменационные билеты уравнения, неравенства и их системы, которые часто бывают весьма сложными и требующими нестандартного подхода к решению. В школе же этот один из наиболее трудных разделов школьного курса математики рассматривается только на немногочисленных факультативных занятиях.

Готовя данную работу, я ставил цель более глубокого изучения этой темы, выявления наиболее рационального решения, быстро приводящего к ответу. На мой взгляд графический метод является удобным и быстрым способом решения уравнений и неравенств с параметрами.


В моём проекте рассмотрены часто встречающиеся типы уравнений, неравенств и их систем.

1. Уравнения с параметрами


    1. Основные определения


Рассмотрим уравнение

(a, b, c, …, k, x)=(a, b, c, …, k, x), (1)

где a, b, c, …, k, x -переменные величины.

Любая система значений переменных

а = а0, b = b0, c = c0, …, k = k0, x = x0,

при которой и левая и правая части этого уравнения принимают действительные значения, называется системой допустимых значений переменных a, b, c, …, k, x. Пусть А – множество всех допустимых значений а, B – множество всех допустимых значений b, и т.д., Х – множество всех допустимых значений х, т.е. аА, bB, …, xX. Если у каждого из множеств A, B, C, …, K выбрать и зафиксировать соответственно по одному значению a, b, c, …, k и подставить их в уравнение (1), то получим уравнение относительно x, т.е. уравнение с одним неизвестным.

Переменные a, b, c, …, k, которые при решении уравнения считаются постоянными, называются параметрами, а само уравнение называется уравнением, содержащим параметры.

Параметры обозначаются первыми буквами латинского алфавита: a, b, c, d, …, k, l, m, n а неизвестные – буквами x, y,z.

Решить уравнение с параметрами – значит указать, при каких значениях параметров существуют решения и каковы они.

Два уравнения, содержащие одни и те же параметры, называются равносильными, если:

а) они имеют смысл при одних и тех же значениях параметров;

б) каждое решение первого уравнения является решением второго и наоборот.


    1. Алгоритм решения




  1. Находим область определения уравнения.

  2. Выражаем a как функцию от х.

  3. В системе координат хОа строим график функции а=(х) для тех значений х, которые входят в область определения данного уравнения.

Находим точки пересечения прямой а=с, где с(-;+) с графиком функции а=(х).Если прямая а=с пересекает график а=(х), то определяем абсциссы точек пересечения. Для этого достаточно решить уравнение а=(х) относительно х.

  1. Записываем ответ.


    1. Примеры


I. Решить уравнение
(1)

Решение.

Поскольку х=0 не является корнем уравнения, то можно разрешить уравнение относительно а :


или

График функции – две “склеенных” гиперболы. Количество решений исходного уравнения определяется количеством точек пересечения построенной линии и прямой у=а.

Если а  (-;-1](1;+) , то прямая у=а пересекает график уравнения (1) в одной точке. Абсциссу этой точки найдем при решении уравнения относительно х.

Таким образом, на этом промежутке уравнение (1) имеет решение .
Если а  , то прямая у=а пересекает график уравнения (1) в двух точках. Абсциссы этих точек можно найти из уравнений и , получаем

и .

Если а  , то прямая у=а не пересекает график уравнения (1), следовательно решений нет.


Ответ:

Если а  (-;-1](1;+) , то ;

Если а  , то , ;

Если а  , то решений нет.
II. Найти все значения параметра а, при которых уравнение имеет три различных корня.
Решение.

Переписав уравнение в виде и рассмотрев пару функций , можно заметить, что искомые значения параметра а и только они будут соответствовать тем положениям графика функции
, при которых он имеет точно три точки пересечения с графиком функции .

В системе координат хОу построим график функции ). Для этого можно представить её в виде и, рассмотрев четыре возникающих случая, запишем эту функцию в виде


Поскольку график функции – это прямая, имеющая угол наклона к оси Ох, равный , и пересекающая ось Оу в точке с координатами (0 , а), заключаем, что три указанные точки пересечения можно получить лишь в случае, когда эта прямая касается графика функции . Поэтому находим производную

Ответ: .

III. Найти все значения параметра а, при каждом из которых система уравнений



имеет решения.
Решение.

Из первого уравнения системы получим при Следовательно, это уравнение задаёт семейство “полупарабол” - правые ветви параболы “скользят” вершинами по оси абсцисс.

Выделим в левой части второго уравнения полные квадраты и разложим её на множители



Множеством точек плоскости , удовлетворяющих второму уравнению, являются две прямые

и

Выясним, при каких значениях параметра а кривая из семейства “полупарабол” имеет хотя бы одну общую точку с одной из полученных прямых.

Если вершины полупарабол находятся правее точки А, но левее точки В (точка В соответствует вершине той “полупараболы”, которая касается

прямой
), то рассматриваемые графики не имеют общих точек. Если вершина “полупараболы” совпадает с точкой А, то .

Случай касания “полупараболы” с прямой определим из условия существования единственного решения системы



В этом случае уравнение



имеет один корень, откуда находим :



Следовательно, исходная система не имеет решений при , а при или имеет хотя бы одно решение.

Ответ: а  (-;-3] ( ;+).
IV. Решить уравнение



Решение.

Использовав равенство , заданное уравнение перепишем в виде



Это уравнение равносильно системе



Уравнение перепишем в виде

. (*)

Последнее уравнение проще всего решить, используя геометрические соображения. Построим графики функций и Из графика следует, что при графики не пересекаются и, следовательно, уравнение не имеет решений.

Если , то при графики функций совпадают и, следовательно, все значения являются решениями уравнения (*).

При графики пересекаются в одной точке, абсцисса которой