Файл: "Графическое решение уравнений и неравенств".docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 23.11.2023

Просмотров: 388

Скачиваний: 30

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Ответ: Решения неравенства существуют при

, где , причем при решения ; при решения .

IV. Решить неравенство


Решение.

  1. Находим ОДЗ или линии разрыва (асимптоты)





  1. Найдем уравнения функций, графики которых нужно построить в ПСК; для чего перейдем к равенству :




Разложим числитель на множители.



т. к. то



Разделим обе части равенства на при . Но является решением : левая часть уравнения равна правой части и равна нулю при .







3. Строим в ПСК хОа графики функций



и нумеруем образовавшиеся области (оси роли не играют). Получилось девять областей.

4. Ищем, какая из областей подходит для данного неравенства, для чего берем точку из области и подставляем в неравенство.
Для наглядности составим таблицу.




точка

неравенство:

вывод

1





-

2





+

3





-

4





+

5





-

6





+

7





-

8





+

9





-



5. Найдем точки пересечения графиков



6. Зададим прямую а=сonst и будем сдвигать её от - до +.
Ответ.

при

при

при

при решений нет

при


  1. Применение графиков в решении уравнений.


3.1 Графическое решение квадратного уравнения:

Рассмотрим приведённое квадратное уравнение : x2+px+q=0;

Перепишем его так:x2=-px-q.(1)

Построим графики зависимостей:y=x2 и y=-px-q.

График первой зависимости нам известен, это есть парабола; вторая зависимость- линейная; её график есть прямая линия. Из уравнения (1) видно, что в том случае, когда х является его решением, рдинаты точек обоих графиков равны между собой. Значит, данному значению х соответствует одна и та же точка как на параболе, так и на прямой, то есть парабола и прямая пересекаются в точке с абциссой х.

Отсюда следующий графический способ решения квадратного уравнения:чертим параболу у=х2, чертим(по точкам) прямую у=-рх-q.

Если прямая и парабола пересекаются, то абциссы точек пересечения являются корнями квадратного уравнения. Этот способ удобен, если не требуется большой точности.

Примеры:

1.Решить уравнение:4x2-12x+7=0

Представим его в виде x2=3x-7/4.

П
остроим параболу y=x2 и прямую y=3x-7/4.

Рисунок 1.

Для построения прямой можно взять, например, точки(0;-7/4) и (2;17/4).Парабола и прямая пересекаются в двух точках с абциссами x1=0.8 и x2=2.2 (см. рисунок 1).

2.Решить уравнение : x2-x+1=0.

Запишем уравнение в виде: x2=x-1.

Построив параболу у=х

2 и прямую у=х-1, увидим, что они не пересекаются(рисунок 2), значит уравнение не имеет корней.
Р
исунок 2.

Проверим это. Вычислим дискриминант:

D=(-1)2-4=-3<0,

А поэтому уравнение не имеет корней.

3. Решить уравнение: x2-2x+1=0

Рисунок 3.

Если аккуратно начертить параболу у=х2 и прямую у=2х-1, то увидим, что они имеют одну общую точку(прямая касается параболы, см. рисунок 3), х=1, у=1;уравнение имеет один корень х=1(обязательно проверить это вычислением).

3.2. Системы уравнений.
Графиком уравнения с двумя переменными называется множество точек координатной плоскости, координаты которых обращают уравнение в верное равенство. Графики уравнений с двумя переменными весьма разнообразны. Например, графиком уравнения 2х+3у=15 является прямая, уравнения у=0.5х2 –2 –парабола, уравнения х2 2=4 – окружность, и т.д..

Степень целого уравнения с двумя переменными определяется так же, как и степень целого уравнения с одной переменной. Если левая часть уравнения с двумя переменными представляет собой многочлен стандартного вида, а правая число 0, то степень уравнения считают равной степени многочлена. Для того чтобы выяснить, какова степень какого-либо уравнения с двумя переменными, его заменяют равносильным уравнением, левая часть которого – многочлен стандартного вида, а правая- нуль. Рассмотрим графический способ решения.

Пример1:решить систему ⌠ x2 +y2 =25 (1)

⌠y=-x2+2x+5 (2)

Построим в одной системе координат графики уравнений(Рисунок4):

Построим в одной системе координат графи)


х2 2=25 и у=-х2+2х+5

Координаты любой точки построенной окружности являются решением уравнения 1, а координаты любой точки параболы являются решением уравнения 2. Значит, координаты каждой из точек пересечения окружности и параболы удовлетворяют как первому уравнению системы, так и второму, т.е. являются решением рассматриваемой системы. Используя рисунок, находим приближённые значения координат точек пересечения графиков: А(-2,2; -4,5), В(0;5), С(2,2;4,5), D(4;-3).Следовательно, система уравнений имеет четыре решения:

х1≈-2,2 , у1≈-4,5; х2≈0, у2≈5;

х3≈2,2 , у3≈4,5; х4≈4, у4≈-3.

Подставив найденные значения в уравнения системы, можно убедиться, что второе и четвёртое из этих решений являются точными, а первое и третье – приближёнными.


III)Тригонометрические уравнения:

Тригонометрические уравнения решают как аналитически, так и графически. Рассмотрим графический способ решения на примере.

Рисунок5.

Пример1:sinx+cosx=1. Построим графики функций y=sinx u y=1-cosx.(рисунок 5) И
з графика видно, что уравнение имеет 2 решения: х=2πп,где пЄZ и х=π/2+2πk,где kЄZ(Обязательно проверить это вычислениями). Рисунок 6.

Пример2:Решить уравнение:tg2x+tgx=0. Решать это уравнение будем по принципу решения предыдущего. Сначала построим графики(См. рисунок 6)функций: y=tg2x u y=-tgx. По графику видно что уравнение имеет 2 решения: х=πп, пЄZ u x=2πk/3, где kЄZ.(Проверить это вычислениями)



  1. Применение графиков в решении неравенств.


1)Неравенства с модулем.

Пример1.

Решить неравенство |x-1|+|x+1|<4.

На интеграле(-1;-∞) по определению модуля имеем |х-1|=-х+1,|х+1|=-х-1, и, следовательно, на этом интеграле неравенство равносильно линейному неравенству –2х<4,которое справедливо при х>-2. Таким образом, в множество решений входит интеграл(-2;-1).На отрезке [-1,1] исходное неравенство равносильно верному числовому неравенству 2<4.Поэтому все значения переменной, принадлежащие этому отрезку, входят в множество решений.

На интеграле (1;+∞) опять получаем линейное неравенство 2х<4, справедливое при х<2. Поэтому интеграл (1;2) также входит в множество решений. Объединяя полученные результаты, делаем вывод: неравенству удовлетворяют все значения переменной из интеграла (-2;2) и только они.

Однако тот же самый результат можно получить из наглядных и в то же время строгих геометрических соображений. На рисунке 7 построены графики функций: y=f(x)=|x-1|+|x+1| и y=4.

Рисунок 7.
Н
а интеграле (-2;2) график функции y=f(x) расположен под графиком функции у=4, а это означает, что неравенство f(x)<4 справедливо. Ответ:(-2;2)

II)Неравенства с параметрами.

Решение неравенств с одним или несколькими параметрами представляет собой, как правило, задачу более сложную по сравнению с задачей, в которой параметры отсутствуют.

Например, неравенство √а+х+√а-х>4, содержащее параметр а, естественно, требует, для своего решения гораздо больше усилий, чем неравенство √1+х + √1-х>1.

Что значит решить первое из этих неравенств? Это, по существу, означает решить не одно неравенство, а целый класс, целое множество неравенств, которые получаются, если придавать параметру а конкретные числовые значения. Второе же из выписанных неравенств является частным случаем первого, так как получается из него при значении а=1.


Таким образом, решить неравенство, содержащее параметры, это значит определить, при каких значениях параметров неравенство имеет решения и для всех таких значений параметров найти все решения.

Пример1:

Решить неравенство |х-а|+|х+а|0.

Для решения данного неравенства с двумя параметрами a u b воспользуемся геометрическими соображениями. На рисунке 8 и 9 построены графики функций.

Y=f(x)=|x-a|+|x+a| u y=b.

Очевидно, что при b<=2|a| прямая y=b проходит не выше горизонтального отрезка кривой y=|x-a|+|x+a| и, следовательно, неравенство в этом случае не имеет решений (рисунок 8). Если же b>2|a|, то прямая y=b пересекает график функции y=f(x) в двух точках (-b/2;b) u (b/2;b)(рисунок 6) и неравенство в этом случае справедливо при –b/2
Ответ: Если b<=2|a| , то решений нет,

Если b>2|a|, то x €(-b/2;b/2).
III) Тригонометрические неравенства:

При решении неравенств с тригонометрическими функциями существенно используется периодичность этих функций и их монотонность на соответствующих промежутках. Простейшие тригонометрические неравенства. Функция sin x имеет положительный период 2π. Поэтому неравенства вида: sin x>a, sin x>=a,

sin x
Достаточно решить сначала на каком-либо отрезке длины 2π. Множество всех решений получим, прибавив к каждому из найденных на этом отрезке решений числа вида 2πп, пЄZ.

Пример 1: Решить неравенство sin x>-1/2.(рисунок 10)

Сначала решим это неравенство на отрезке[-π/2;3π/2]. Рассмотрим его левую часть – отрезок [-π/2;3π/2].Здесь уравнение sin x=-1/2 имеет одно решение х=-π/6; а функция sin x монотонно возрастает. Значит, если –π/2<=x<= -π/6, то sin x<=sin(-π/6)=-1/2, т.е. эти значения х решениями неравенства не являются. Если же –π/6<х<=π/2 то sin x>sin(-π/6) = –1/2. Все эти значения х не являются решениями неравенства.

На оставшемся отрезке [π/2;3π/2] функция sin x монотонно убывает и уравнение sin x = -1/2 имеет одно решение х=7π/6. Следовательно, если π/2<=x<7π/, то sin x>sin(7π/6)=-1/2, т.е. все эти значения х являются решениями неравенства. Для x Є[7π/6;3π/2] имеем sin x<= sin(7π/6)=-1/2, эти значения х решениями не являются . Таким образом, множество всех решений данного неравенства на отрезке [-π/2;3π/2] есть интеграл (-π/6;7π/6).

В силу периодичности функции sin x с периодом 2π значения х из любого интеграла вида: (-π/6+2πn;7π/6 +2πn),nЄZ, также являются решениями неравенства. Никакие другие значения х решениями этого неравенства не являются .

Ответ: -π/6+2πn


Заключение

Мы рассмотрели графический метод решения уравнений и неравенств; рассмотрели конкретные примеры, при решении которых использовали такие свойства функций, как монотонность и четность. Анализ научной литературы, учебников математики позволил структурировать отобранный материал в соответствии с целями исследования, подобрать и разработать эффективные методы решения уравнений и неравенств. В работе представлен графический метод решения уравнений и неравенств и примеры, в которых используются данные методы. Результатом проекта можно считать творческие задания, как вспомогательный материал для развития навыка решения уравнений и неравенств графическим методом.

Список использованной литературы


  1. Далингер В. А. “Геометрия помогает алгебре”. Издательство “Школа - Пресс”. Москва 1996 г.

  1. Далингер В. А. “Все для обеспечения успеха на выпускных и вступительных экзаменах по математике”. Издательство Омского педуниверситета. Омск 1995 г.

  1. Окунев А. А. “Графическое решение уравнений с параметрами”. Издательство “Школа - Пресс”. Москва 1986 г.

  1. Письменский Д. Т. “Математика для старшеклассников”. Издательство “Айрис”. Москва 1996 г.

  1. Ястрибинецкий Г. А. “Уравнений и неравенства, содержащие параметры”. Издательство “Просвещение”. Москва 1972 г.

  1. Г. Корн и Т.Корн “Справочник по математике”. Издательство “Наука” физико–математическая литература. Москва 1977 г.

  1. Амелькин В. В. и Рабцевич В. Л. “Задачи с параметрами” . Издательство “Асар”. Минск 1996 г.


Интернет ресурсы

http://www.bymath.net/studyguidHYPERLINK "http://www.bymath.net/studyguide/fun/sec/fun10.htm"eHYPERLINK "http://www.bymath.net/studyguide/fun/sec/fun10.htm"/fun/sec/fun10.htm

httpsHYPERLINK "https://xreferat.com/54/202-3-graficheskoe-reshenie-uravneniiy-neravenstv-sistem-s-parametrom.htm"://HYPERLINK "https://xreferat.com/54/202-3-graficheskoe-reshenie-uravneniiy-neravenstv-sistem-s-parametrom.htm"xreferatHYPERLINK "https://xreferat.com/54/202-3-graficheskoe-reshenie-uravneniiy-neravenstv-sistem-s-parametrom.htm".HYPERLINK "https://xreferat.com/54/202-3-graficheskoe-reshenie-uravneniiy-neravenstv-sistem-s-parametrom.htm"comHYPERLINK "https://xreferat.com/54/202-3-graficheskoe-reshenie-uravneniiy-neravenstv-sistem-s-parametrom.htm"/54/202-3-HYPERLINK "https://xreferat.com/54/202-3-graficheskoe-reshenie-uravneniiy-neravenstv-sistem-s-parametrom.htm"graficheskoeHYPERLINK "https://xreferat.com/54/202-3-graficheskoe-reshenie-uravneniiy-neravenstv-sistem-s-parametrom.htm"-HYPERLINK "https://xreferat.com/54/202-3-graficheskoe-reshenie-uravneniiy-neravenstv-sistem-s-parametrom.htm"reshenieHYPERLINK "https://xreferat.com/54/202-3-graficheskoe-reshenie-uravneniiy-neravenstv-sistem-s-parametrom.htm"-HYPERLINK "https://xreferat.com/54/202-3-graficheskoe-reshenie-uravneniiy-neravenstv-sistem-s-parametrom.htm"uravneniiyHYPERLINK "https://xreferat.com/54/202-3-graficheskoe-reshenie-uravneniiy-neravenstv-sistem-s-parametrom.htm"-HYPERLINK "https://xreferat.com/54/202-3-graficheskoe-reshenie-uravneniiy-neravenstv-sistem-s-parametrom.htm"neravenstvHYPERLINK "https://xreferat.com/54/202-3-graficheskoe-reshenie-uravneniiy-neravenstv-sistem-s-parametrom.htm"-HYPERLINK "https://xreferat.com/54/202-3-graficheskoe-reshenie-uravneniiy-neravenstv-sistem-s-parametrom.htm"sistemHYPERLINK "https://xreferat.com/54/202-3-graficheskoe-reshenie-uravneniiy-neravenstv-sistem-s-parametrom.htm"-HYPERLINK "https://xreferat.com/54/202-3-graficheskoe-reshenie-uravneniiy-neravenstv-sistem-s-parametrom.htm"sHYPERLINK "https://xreferat.com/54/202-3-graficheskoe-reshenie-uravneniiy-neravenstv-sistem-s-parametrom.htm"-HYPERLINK "https://xreferat.com/54/202-3-graficheskoe-reshenie-uravneniiy-neravenstv-sistem-s-parametrom.htm"parametromHYPERLINK "https://xreferat.com/54/202-3-graficheskoe-reshenie-uravneniiy-neravenstv-sistem-s-parametrom.htm".HYPERLINK "https://xreferat.com/54/202-3-graficheskoe-reshenie-uravneniiy-neravenstv-sistem-s-parametrom.htm"htm

https://xreferat.com/54/2620-1-graficheskoe-resHYPERLINK "https://xreferat.com/54/2620-1-graficheskoe-reshenie-uravneniiy.htm"hHYPERLINK "https://xreferat.com/54/2620-1-graficheskoe-reshenie-uravneniiy.htm"enie-uravneniiy.htm4>