Файл: Многомерное представление данных ключевое требование к olap средствам.docx
Добавлен: 29.11.2023
Просмотров: 65
Скачиваний: 3
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Хранение активных данных в «плоских» файлах
Этот подход предполагает хранение порций данных в обычных файлах. Обычно он используется как дополнение к одному из двух основных подходов с целью ускорения работы за счет кэширования актуальных данных на диске или в оперативной памяти клиентского ПК.
Гибридный подход к хранению данных
Большинство производителей OLAP-систем, продвигающих свои комплексные решения, часто включающие помимо собственно OLAP-системы СУБД, инструменты ETL (Extract Transform Load) и отчетности, в настоящее время используют гибридный подход к организации хранения активных данных системы, распределяя их тем или иным образом между РСУБД и специализированным хранилищем, а также между дисковыми структурами и кэшированием в оперативной памяти.
Так как эффективность такого решения зависит от конкретных подходов и алгоритмов, применяемых производителем для определения того, какие данные и где хранить, то поспешно делать выводы о изначально большей эффективности таких решений как класса без оценки конкретных особенностей рассматриваемой системы.
OLAP (англ. on-line analytical processing) – совокупность методов динамической обработки многомерных запросов в аналитических базах данных. Такие источники данных обычно имеют довольно большой объем, и в применяемых для их обработки средствах одним из наиболее важных требований является высокая скорость. В реляционных БД информация хранится в отдельных таблицах, которые хорошо нормализованы. Но сложные многотабличные запросы в них выполняются довольно медленно. Значительно лучшие показатели по скорости обработки в OLAP-системах достигаются за счет особенности структуры хранения данных. Вся информация четко организована, и применяются два типа хранилищ данных: измерения (содержат справочники, разделенные по категориям, например, точки продаж, клиенты, сотрудники, услуги и т.д.) и факты (характеризуют взаимодействие элементов различных измерений, например, 3 марта 2010 г. продавец A оказал услугу клиенту Б в магазине В на сумму Г денежных единиц). Для вычисления результатов в аналитическом кубе применяются меры. Меры представляют собой совокупности фактов, агрегированных по соответствующим выбранным измерениям и их элементам. Благодаря этим особенностям на сложные запросы с многомерными данными затрачивается гораздо меньшее время, чем в реляционных источниках.
Одним из основных вендоров OLAP-систем является корпорация Microsoft. Рассмотрим реализацию принципов OLAP на практических примерах создания аналитического куба в приложениях Microsoft SQL Server Business Intelligence Development Studio (BIDS) и Microsoft Office PerformancePoint Server Planning Business Modeler (PPS) и ознакомимся с возможностями визуального представления многомерных данных в виде графиков, диаграмм и таблиц.
Например, в BIDS необходимо создать OLAP-куб по данным о страховой компании, ее работниках, партнерах (клиентах) и точках продаж. Допустим предположение, что компания предоставляет один вид услуг, поэтому измерение услуг не понадобится.
Сначала определим измерения. С деятельности компании связаны следующие сущности (категории данных):
-
Точки продаж
- Сотрудники
- Партнеры
Также создаются измерения Время и Сценарий, которые являются обязательными для любого куба.
Далее необходима одна таблица для хранения фактов (таблица фактов).
Информация в таблицы может вноситься вручную, но наиболее распространена загрузка данных с применением мастера импорта из различных источников.
На следующем рисунке представлена последовательность процесса создания и заполнения таблиц измерений и фактов вручную:
Рис.1. Таблицы измерений и фактов в аналитической БД. Последовательность создания
После создания многомерного источника данных в BIDS имеется возможность просмотреть его представление (Data Source View). В нашем примере получится схема, представленная на рисунке ниже.
Рис.2. Представление источника данных (Data Source View) в Business Intellingence Development Studio (BIDS)
Как видим, таблица фактов связана с таблицами измерений посредством однозначного соответствия полей-идентификаторов (PartnerID, EmployeeID и т.д.).
Далее производится развертывание куба. Кроме того, при необходимости дополнительно настраиваются иерархии, атрибуты измерений, создаются вычисляемые меры.
Посмотрим на результат. На вкладке обозревателя куба, перетаскивая меры и измерения в поля итогов, строк, столбцов и фильтров, можем получить представление интересующих данных (к примеру, заключенные сделки по страховым договорам, заключенные определенным работником в 2005 году):
Рис.3. Просмотр аналитического куба
Основные игроки и решения
OLAP-системы входят в состав подавляющего большинства решений для бизнес-аналитики, «корпоративных» редакций СУБД основных поставщиков (IBM, Microsoft, Oracle). В той или иной мере технологии OLAP используются в существенной части современных ERP-систем. В государственном секторе РФ отдается предпочтение OLAP-инструментарию, предложенному Группой компаний БАРС Груп.
Внешние ссылки
Ознакомиться с примерами визуализации данных на основе куба BIDS, а также узнать о возможностях создания многомерных моделей в Microsoft Office PerformancePoint Server можно здесь
Источники
Codd E.F., Codd S.B., Salley C.T. "Providing OLAP (On-line Analytical Processing) to User-Analysts: An IT Mandate". Codd & Date, Inc, 1993. Retrieved on 2008-12-11.
Nigel Pendse. "What is OLAP? An analysis of what the often misused OLAP term is supposed to mean. Retrieved on 2008-12-11.
Nigel Pendse. "OLAP architectures". Retrieved on 2008-12-15.