Файл: Учебник Пожарная безопасность технологических процессов Пожарнопрофилактическая подготовка.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 29.11.2023

Просмотров: 596

Скачиваний: 23

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Температура искры возрастает линейно с увеличением нагрузки и более высокую температуру имеют искры, образующиеся при ударе стали о корунд, чем стали о сталь. Несмотря на высокую температуру, искры удара и трения, охлаждаясь, могут отдать небольшое количество тепла, так как масса их очень мала.

Совершая свой полет, искра все время соприкасается с новыми и новыми элементарными объемами горючей среды и отдает им свое тепло. Таким образом, контакт каждого элементарного объема горючей среды с раскаленной искрой исчисляется сотыми, а может быть и тысячными долями секунды, при этом температура искры все время будет изменяться. Бывает так, что искра попадает в горючую среду не сразу после образования, а только после того, как пролетит определенное расстояние и за это время несколько остынет. Следовательно, практический интерес представляет изменения температуры искры во время ее полета.

Искры удара и трения способны зажигать только такие смеси, как ацетилен, этилен, водород, окись углерода, сероуглерод.

Более опасными являются не летающие, а неподвижные искры, т. е. такие, которые после высечения попали на какую-либо поверхность (препятствие). При этом искра медленнее охлаждается и будет отдавать свое тепло одному и тому же объему окружающей ее горючей среды; таким образом, условия для воспламенения будут более благоприятными.

Летящая искра не воспламеняет пылевоздушные смеси, но попав на осевшую пыль или на волокнистые вещества, вызывает появление очагов тления.

Этим, видимо, объясняется, что наибольшее количество вспышек и загораний от механических искр возникает в таких машинах, где имеются волокнистые материалы или отложения мелкой горючей пыли. Так, в размольных цехах мельниц и крупозаводов, в сортировочно-разрыхлительных и угарных цехах текстильных фабрик, а также на хлопкоочистительных заводах более 50% всех загораний и пожаров возникает от искр, высекаемых при ударах твердых тел.

Воспламеняющая способность искр удара и трения резко падает с уменьшением содержания кислорода в смеси и, наоборот, увеличивается по мере обогащения воздуха кислородом.

Весьма опасные искры образуются при ударах алюминиевых тел о стальную окисленную поверхность. В этом случае между разогретой алюминиевой частичкой и окислами железа происходит химическое взаимодействие с выделением значительного количества тепла.

Опасные проявления искр удара и трения наблюдаются при использовании стальных инструментов во взрывоопасных цехах, попадании посторонних металлических тел или камней в машины с вращающимися механизмами или механизмами ударного действия, ударах вращающихся
механизмов о неподвижные части машины, а также во время аварий, связанных с поломкой быстродвижущихся механизмов или разрывом корпуса аппаратов.

Искры, образующиеся при попадании в машины металла или камней. Если машины имеют стальной корпус и быстровращающиеся механизмы в виде барабанов, лопастей, бил, ножей, колес, дисков и т. п., то попадание в них посторонних твердых, предметов в виде кусочков метала или камней может привести к высечению искр. К таким машинам и аппаратам, представляющим пожарную опасность, относятся:

аппараты с мешалками для растворения или химической обработки твердых веществ в легковоспламеняющихся растворителях;

машины ударно-центробежного действия для измельчения, разрыхления и смешения твердых горючих материалов;

аппараты-смесители для перемешивания и составления порошковых композиций;

аппараты центробежного действия для перемещения газов, паров и измельченных твердых веществ (например, вентиляторы, газодувки, центробежные компрессоры).

Твердые предметы могут попасть в эти машины вместе с обрабатываемыми продуктами или появиться в результате неисправности и поломки машин.

Образование искр при работе указанных машин и аппаратов, предупреждают путем очистки веществ от металлических примесей и камней

Искры, образующиеся при ударах подвижных механизмов о неподвижные части машин. В практике нередко применяют машины и станки, движущиеся и быстровращающиеся механизмы которых расположены очень близко от неподвижных частей. Так, ротор центробежных вентиляторов почти соприкасается с вертикальными стенками кожуха и менее чем на 1/100 диаметра отстоит от выкидного патрубка.

Естественно, что в этом случае создаются условия, при которых подвижные части будут ударяться о неподвижные. Это может, произойти при неправильной регулировке зазоров, при деформации и вибрациях вала, изнашивании подшипников, перекосах, недостаточном креплении на валу режущего инструмента и т. д. Такие случаи приводят к возможности высечения искр, но и к поломкам отдельных частей машин. Поломка узла машины или выкрашивание металла в свою очередь могут сопровождаться образованием искр и попаданием металлических частичек в обрабатываемый продукт.

Всякое перемещение соприкасающихся друг с другом тел требует затраты энергии на преодоление работы сил трения. Эта энергия превращается в теплоту. Наибольшее количество тепла выделяется при сухом и полусухом трении



Наиболее опасными по возможности перегрева являются подшипники скольжения сильно нагруженных и высокооборотных валов.

К увеличению сил трения, а следовательно, и количества выделяющегося тепла могут привести нарушение качества смазки рабочих поверхностей, загрязнение, перекосы, перегрузка машины и чрезмерная затяжка подшипника.

Недостаточность смазки подшипника может быть вызвана ее нерегулярностью, малым количеством подачи смазочного масла, засоренностью отверстия или канала для подвода масла к подшипнику, а также применением масла не того сорта, на который данный подшипник рассчитан.

Ухудшению условий теплоотдачи от поверхности (подшипника в окружающую среду могут способствовать загрязнение поверхности слоем малотеплопроводных веществ, неисправность системы дополнительного охлаждения подшипника, дополнительная изоляция подшипника или всей машины невентилируемыми кожухами и т. п.

Весьма часто наружная поверхность подшипников загрязняется отложениями горючей пыли (древесной, мучной, хлопковой), которая создает условия для его перегрева и в то же время, подвергаясь длительному воздействию тепла, сама начинает окисляться. Принудительное охлаждение подшипников чаще всего обеспечивают циркуляцией масла или холодной воды через охладительную рубашку подшипника. Недостаточное количество подаваемого в систему охлаждения масла или воды, а также сильное загрязнение теплообменной поверхности приводят к повышению температуры подшипника.

К перегреву транспортной ленты приводит длительное проскальзывание ремня или ленты относительно шкива. Такое проскальзывание называемое буксованием, возникает в результате не соответствия между передаваемым усилием и натяжением ветвей ремня, ленты.

При буксовании вся энергия расходуется на трение ремня о шкив, в результате чего выделяется значительное количество тепла. Буксование часто происходит из-за перегрузки или слабой натяжки ремня. У норий причиной буксования ленты чаще всего является такое состояние, когда ковши нории не могут пройти через толщу транспортируемого вещества.

Волокнистые материалы и соломистые продукты нередко наматываются на валы около подшипников. Наматывание сопровождается постепенным уплотнением массы, а затем сильным нагреванием ее при трении о стенки машины, обугливание и, наконец, воспламенением.

Пожары от подобного рода причин часто возникают на льнозаводах, пенько-джутовых заводах, прядильных фабриках, сушилках волокна, в комбайнах при уборке зерновых культур.


Иногда загорание происходит в результате наматывания волокнистых материалов на валы транспортеров, перемещающих отходы и готовую продукцию. На прядильных .фабриках загорания часто возникают в результате обрыва шнура или тесьмы, с помощью которых приводятся во вращение веретена прядильных машин, с последующим наматыванием их на шейки быстровращающихся ведущих валов.

Наматыванию волокнистых материалов на вращающиеся валы машин способствуют: наличие увеличенного зазора между валом и подшипником (попадая в этот зазор, волокно заклинивается, защемляется, начинается процесс наматывания его на вал со все более сильным уплотнением слоев), наличие оголенных участков вала, с которыми соприкасаются волокнистые материалы, пропуск через машины влажного и загрязненного сырья.

Перегревы при механической обработке твердых горючих материалов. Механическая обработка (резание, строгание фрезерование, шлифовка) твердых материалов связана с преодолением значительных сил трения и вследствие этого с нагреванием материала, отходов, а также режущего инструмента. При нормальных режимах резания и правильной заточке режущего инструмента развивающиеся температуры не представляют опасности, однако отклонение от нормы может вызвать значительное их повышение. Основными факторами, влияющими на разогрев материала при его механической обработке, являются: скорость резания, подача инструмента (толщина стружки), качество заточки инструмента, механические и теплотехнические качества материала. Чем больше скорость резания, толще стружка и тупее инструмент, тем больше будет выделяться тепла.

При нарушении режима механической обработки опасность воспламенения представляют пластмассы, резина, магниевые сплавы и другие подобные им материалы.

Нагревание газов при сжатии их в компрессорах.

Изменение объема газообразных тел или формы пластических материалов требует затраты механической энергии, при этом выделяется тепло, которое нагревает вещество, а также конструктивные элементы компрессоров и прессов. Процессы сжатия газов и прессования пластических масс широко используются в народном хозяйстве. Компрессорами создают давления, необходимые для транспортировки газов по трубопроводам и для осуществления производственных процессов. Многие производственные операции могут протекать только при повышенном и высоком давлении газа (гидрогенизация жиров требует давления водорода 4—5 атм, наполнение баллонов ацетиленом производится при давлении 25—30 атм, производство этилового спирта из этилена требует давления 100 атм, синтез .аммиака протекает при давлении азотно-водородной смеси до 300 атм, получение полиэтилена высокого давления —до 1500 атм и т. д.).


Почти на всех производственных предприятиях имеются воздушные компрессоры, для получения сжатого воздуха (для передавливания, перемешивания, распыления или пневматической транспортировки веществ, привода в действие тормозных или транспортирующих устройств и т. д.).

Практика эксплуатации компрессоров показала, что при неисправностях и нарушении нормального режима работы могут возникать вспышки, пожары и взрывы не только при сжатии гппюичу гя.чов. но и при сжатии воздуха.

Несмотря на то, что воздушные компрессоры сжимают и подают в трубопроводы не горючий газ, а воздух, в практике имеют место их взрывы с последующими пожарами. Взрывы в воздушных компрессорах происходят в результате образования взрывоопасных концентраций паров и продуктов разложения масла с воздухом при одновременном наличии очагов самовозгорания отложений на поверхности труб. Образование же паров масла и продуктов его разложения вызвано высокой температурой, причина которой — адиабатическое сжатие воздуха.

Под воздействием сравнительно высокой температуры (150°С) часть масла испаряется, разлагается и окисляется кислородом сжимаемого воздуха. Испарению и окислению способствует также развитая поверхность масляной пленки и взвеси. Дальнейшее повышение температуры в компрессоре резко увеличивает интенсивность процесса окисления.

Исследованиями установлено, что в пределе температур 150°С на каждые последующие 10°С повышения температуры процесс окисления ускоряется в 2—3 раза. Выделяющееся при этом тепло способствует еще более интенсивному испарению, разложению и окислению масла. Продукты разложения, окисления и испарения масла уносятся воздухом из компрессора, и часть из них отлагается на поверхности труб в виде масляного нагара. Таким образом, более благоприятные для взрыва условия образуются в нагнетательном воздуховоде, так как процесс окисления масла продолжается и в слое, отложившемся на стенках труб. В результате окисления температура отложений постепенно повышается. Это приводит не только к дополнительному выделению в сжатый воздух паров масла и продуктов его окисления с образованием взрывоопасных концентраций, но и к образованию очагов самовозгорания отложений на трубах, т. е. к взрыву. Самыми опасными являются участки трубопровода от компрессора до воздухосборника и сам воздухосборник. Взрывы чаще всего происходят при работе компрессоров на повышенных давлениях.

Неоднократные случаи взрывов наблюдались при работе кислородных компрессоров. При этом основная причина взрыва заключалась в нарушении установленной системы смазки т е когда применяли не дистиллированную воду, а масло или мыльную эмульсию со значительным содержанием в ней жиров Смазка кислородных компрессоров должна производиться только дистиллированной водой с добавлением не более 10% глицерина.