Файл: Огнестойкость зданий и сооружений поведение строительных конструкций при пожаре.docx
Добавлен: 30.11.2023
Просмотров: 217
Скачиваний: 7
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
• для наружных ненесущих стен - только потеря целостности (Е);
• для ненесущих внутренних стен и перегородок - потеря теплоизолирующей способности и целостности (Е, I);
• для несущих внутренних стен и противопожарных преград - потеря несущей способности, целостности и теплоизолирующей способности (R, Е, I).
Фактический предел огнестойкости стальных конструкций (см. табл. 1) при так называемом стандартном пожаре в зависимости от толщины элементов и величины действующих напряжений равен 6-15 минутам. Значение требуемых пределов огнестойкости основных строительных конструкций, в том числе металлических, составляет от 15 минут до 4 часов в зависимости от степени огнестойкости здания и типа конструкций. Однако большинство незащищенных стальных конструкций может удовлетворять минимальным требованиям по пределу огнестойкости лишь до 15 минут. Это позволяет сделать вывод о том, что область применения металлических конструкций ограничена по огнестойкости, так как не обеспечивается выполнение следующего условия безопасности:
Пф / Птр
где Пф - фактический предел огнестойкости конструкций;
Птр - требуемый (нормативный) предел огнестойкости.
Это условие безопасности является основным критерием обоснования необходимости огнезащиты металлических конструкций, то есть если значение показателя Пф больше или равно значению Птр, то огнезащита не требуется, а при Пф меньше Птр огнезащита обязательна.
Необходимые пределы огнестойкости строительных конструкций определяются исходя из требуемой степени огнестойкости зданий (сооружений) по таблице 4* СНиП 21-01-97".
Фактические пределы огнестойкости строительных конструкций можно установить двумя способами: огневыми испытаниями (REI) и расчетным методом (RI).
В соответствии с методикой расчета, изложенной в"Пособии по определению пределов огнестойкости, пределов распространения огня по конструкциям и групп возгораемости материалов" (ЦНИИСК им. В.А. Кучеренко Госстроя СССР, Москва, 1985 г.), следует считать, что металлические конструкции не распространяют огонь (предел распространения огня здесь нужно приравнивать к нулю).
Предел огнестойкости несущих металлоконструкций зависит от приведенной толщины металла (6пр, мм) и собственного предела огнестойкости. Приведенная толщина металла вычисляется по формуле:
Тпр = F/P,
где F - площадь сечения (мм2), значение которой для проката фасонной стали берется по сортаменту (ГОСТу), а для составных (сварных) сечений определяется из расчета суммы площадей составляющих элементов конструкций;
Р - периметр обогреваемой поверхности конструкции (мм).
Обогреваемый периметр металлоконструкций определяется без учета поверхностей, примыкающих к плитам, настилам перекрытий и стенам при условии, что предел огнестойкости этих конструкций не ниже предела огнестойкости обогреваемой конструкции.
Для ферм и других статически определимых конструкций, состоящих из элементов различного сечения, приведенная толщина металла определяется по наименьшему значению для всех нагруженных элементов. При установлении предела огнестойкости стальных конструкций с огнезащитой по IV предельному состоянию (для конструкций, защищенных огнезащитными покрытиями и испытываемых без нагрузок, предельным состоянием будет достижение критической температуры материала конструкции) в качестве критической температуры следует принимать параметр 500 °С (Пособие по определению пределов огнестойкости, пределов распространения огня по конструкциям и групп возгораемости материалов, п. 2.34).
Продлить время сохранения свойств металлов в условиях пожара (когда это необходимо и экономически оправдано) можно, используя следующие способы:
• выбор изделий из металлов, более стойких к воздействию пожара. Здесь преимущество отдается сталям (вместо алюминиевых сплавов), причем низколегированным, а не углеродистым. При выборе арматурных изделий следует предпочесть арматуру, не упрочненную наклепом и термообработкой;
• изготовление специальных металлических изделий, более стойких к нагреву;
• огнезащита металлоизделий (конструкций) посредством нанесения внешних теплоизоляционных слоев.
Огнезащита металлоконструкций путем обетонирования по армирующей стальной сетке, оштукатуривания или облицовки негорючими листовыми материалами значительно утяжеляет конструкции и является весьма трудоемкой, что делает ее в ряде случаев неприемлемой. В настоящее время все большее распространение получают новые менее трудоемкие методы с использованием огнезащитных составов, незначительно утяжеляющих конструкции. Наиболее технологичным является нанесение на поверхность объекта тонкослойных вспучивающихся огнезащитных составов (красок). Их огнезащитные свойства проявляются за счет увеличения толщины слоя и изменения теплофизических характеристик при тепловом воздействии в условиях пожара.
Вспучивающиеся огнезащитные краски (покрытия) представляют собой композиционные материалы, имеющие в своем составе полимерное вяжущее и наполнители (антипирены, газообразователи, жаростойкие вещества и стабилизаторы вспененного угольного слоя). При нагревании они разлагаются вокруг защищаемой конструкции с поглощением тепла, происходит выделение инертных газов и паров, которые замещают атмосферный кислород и блокируют конвективный перенос тепла к защищаемой поверхности, подавляя пламя вблизи слоя покрытия, уменьшают радиационный поток тепла и замедляют процесс горения. Вспучивающиеся покрытия содержат компоненты, которые являются источником образования вспененного угольного слоя, покрывающего поверхность конструкции. Этот слой постепенно закоксовывается, становится жестким.
Вспененный слой, отличаясь низкой теплопроводностью, выполняет функцию теплозащитного экрана, который замедляет распространение тепла по конструкции и ее прогрев, в результате чего обработанный объект значительно позже попадает в область критической температуры.
Сегодня на территории Российской Федерации для обеспечения огнезащиты строительных конструкций используется широкий спектр средств огнезащитных материалов (штукатурные составы, вспучивающиеся краски, обмазки, минераловатные плиты (маты), сухие штукатурки), имеющие различную огнезащитную эффективность и соответственно достоинства и недостатки.
Для существующих огнезащитных составов, красок и мастик, сертифицированных в соответствии с методикой, описанной в НПБ 236-97 "Огнезащитные составы для стальных конструкций. Общие требования. Метод определения огнезащитной эффективности", определена лишь группа их огнезащитной эффективности.
Огнезащита конструкций из древесины и материалов на ее основе.
Строительные конструкции из древесины считаются в отечественной строительной отрасли традиционным материалом в связи с большим запасом его на территории нашей страны. Практика их применения показала, что в зданиях с агрессивной средой эти конструкции служат в 4-5 раз дольше, чем железобетонные. При этом расход металла снижается в 2-3 раза, а трудоемкость работ и сроки строительства в 1,5 раза.
Большой размах строительства в последние годы потребовал перехода к индустриальным методам изготовления деревянных конструкций. Развитие химической промышленности способствовало разработке синтетических водонерастворимых клеев, позволивших изготавливать деревянные клеёные конструкции (ДКК). ДДК промышленного производства по сравнению с объектами из цельной древесины имеют следующие преимущества:
• варьирование качества досок (по сортам) при формировании клеёного пакета;
• снижение влияния пороков на прочность и деформативность древесины при изготовлении клеёных конструкций;
• возможность создания элементов конструкций различных размеров сечения и длины;
• большая несущая способность в условиях пожара за счет мощных сечений.
Применение деревянных конструкций представляется наиболее выгодным решением в тех случаях, когда наиболее важны такие качества древесины, как стойкость к агрессивной среде, малая объемная масса и возможность обеспечения высокой механизации работ по обработке данного материала.
Однако объем применения описываемых конструкций в настоящее время явно не соответствует потребностям и потенциальным возможностям строительства. Анализ состояния указанной проблемы позволяет отметить, что в значительной степени это обусловлено недостаточным исследованием достоинств и изъянов конструкций из древесины и материалов на ее основе, влияния современных средств огнезащиты на показатели пожарной опасности конструкций, а также предела их огнестойкости.
В действующих нормативных документах, регламентирующих вопросы обеспечения пожарной безопасности для строительных конструкций из древесины, отсутствует основополагающий критерий пожарной опасности -предел огнестойкости. Тем самым применение данных конструкций в несущих элементах зданий и сооружений, обеспечивающих их устойчивость и
геометрическую неизменяемость при возгорании, противоречит требованиям п. 5.19*табл.4СНиП 21-01-97** "Пожарная безопасность зданий и сооружений". С целью расширения области применения деревянных конструкций необходимо провести сертификационные испытания всех типовых конструкций, запроектированных с учетом нагрузки в соответствии с методикой, изложенной в ГОСТ 30247.0.
Теплофизические и механические свойства древесины в значительной мере зависят от породы дерева, объемной массы, влажности, возраста древесины, а также направления действия нагрузки - вдоль или поперек волокон.
Причиной обрушения деревянных элементов сооружений во время пожара является обугливание части сечения. Всю действующую нагрузку принимает на себя не обугленная часть сечения; постепенное сокращение площади сечения ведет к снижению его несущей способности.
Предел огнестойкости конструкций из древесины определяется временем, за которое несущая способность сечения уменьшается в результате обугливания и прогрева до величины действующей нагрузки. На скорость обугливания древесины оказывают влияние ее плотность, влажность, условия притока воздуха и температурный режим огневого воздействия.
Для элементов с минимальным размером сечения более 120 мм2, изготовленных из воздушно-сухой цельной древесины хвойных пород с влажностью не более 9%, скорость обугливания принимается равной 0,8 мм/мин, а для элементов из клеёной древесины - 0,6 мм/мин. Для конструкций сечением менее 120 мм2 скорость обугливания для цельной древесины равна -1 мм/мин, а для клеёной - 0,7 мм/мин.
Предел огнестойкости (П) деревянной конструкции определяется временем от начала теплового воздействия до воспламенения древесины (Т1) и потери несущей способности расчетного элемента (Т2), то есть:
П = Т1 + Т2,
где Т2 находится по предельно допустимому уменьшению размеров сторон поперечного сечения д элемента: Т2 = ?/V, где V -скорость обугливания древесины. Глубина обугливания древесины не должна превышать значение которое вычисляется из условия наступления предельного состояния конструкции по огнестойкости - потери несущей способности.
Если в расчетном сечении имеются закладные металлические части, то предел огнестойкости объекта снижается на 25%. Предел огнестойкости металлодеревянных конструкций определяют как по огнестойкости деревянных элементов, так и по огнестойкости несущих металлических элементов.