Файл: Практическая работа Демографическая емкость территорий Тема Основные положения классической экологии.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 30.11.2023

Просмотров: 552

Скачиваний: 4

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Практическая работа № 1. Демографическая емкость территорий

Практическая работа № 2. Загрязнение почвенного покрова

Практическая работа № 3. Методика расчета рассеивания выбросов в атмосферу

Статья 22 ФЗ от 04.05.1999 № 96-ФЗ «Об охране атмосферного воздуха» (ред. от 29.07.2018)

Практическая работа № 4. Методы и сооружения очистки сточных вод

Процеживание реализуют в решетках и волокноуловителях. В вертикальных или наклонных решеткахширина прозоров обычно составляет 15–20 мм. Для удаления осадка веществ с входной поверхности решеток используют ручную или механическую очистку. Песколовкииспользуют для очистки сточных вод от частиц металла и песка размером более 0,25 мм. Песколовки защищают отстойники от загрязнения минеральными примесями. В зависимости от направления движения сточной воды применяют горизонтальные песколовки с прямолинейным и круговым движением воды, вертикальные и аэрируемые.Отстойникииспользуют для очистки сточных вод от механических частиц размером более 0,1 мм, а также от частиц нефтепродуктов. В зависимости от направления движения потока сточной воды применяют горизонтальные, радиальные или комбинированные отстойники. Очистку сточных вод в поле действия центробежных сил осуществляют в открытых или напорных гидроциклонах и центрифугах. Открытые гидроциклоныприменяют для выделения из сточной воды крупных твердых примесей со скоростью осаждения более 0,02 м/с. Такие гидроциклоны имеют большую производительность при малых потерях напора, не превышающих 0,5 м. Эффективность очистки сточных вод от твердых частиц в гидроциклонах зависит от состава примесей (материала, размера, формы частиц и др.), а также от конструктивных и геометрических характеристик гидроциклона. Фильтрование применяют для очистки сточных вод от тонкодисперсных примесей с малой их концентрацией. Его используют как на начальной стадии очистки сточных вод, так и после некоторых методов физико-химической или биологической очистки. Для очистки сточных вод фильтрованием применяют в основном два типа фильтров: зернистые, в которых очищаемую сточную воду пропускают через насадки несвязанных пористых материалов, и микрофильтры, фильтр-элементы которых изготовляют из связанных пористых материалов (сеток, натуральных и синтетических тканей, спеченных металлических порошков и т. п.). Фильтрацию сточных вод при помощи данного метода можно организовать двумя различными способами: либо под действием силы тяжести – при отстаивании сточных вод, либо под действием центробежной силы. Установки, очищающие сточные воды такими способами, как правило, могут удалять нерастворимые взвеси размером более нескольких долей миллиметра. В некоторых случаях применяются также магнитные фильтры.Твердые фракции, такие как песок, волокна, металл и другие материалы, накопившиеся на ситах, решетках, в песколовках, в отстойниках, периодически вывозятся на полигоны утилизации как твердые отходы.Промышленный обратный осмос – это технология очистки воды, на которую сделали ставку практически во всех отраслях промышленности. Промышленная система обратного осмоса применяется при подготовке питьевой, котловой, технологической и другой воды, где необходима высокая степень очистки от растворённых в ней ионов. Также данная технология используется при обессоливании морской воды. Зачастую промышленные системы обратного осмоса называют мембранными опреснителями воды, т. к. внутри этого оборудования происходит обратноосмотическое обессоливание воды, или деминерализация. Промышленная установка обратноосмотического опреснения включает обычно следующее оборудование: фильтр тонкой очистки воды, систему реагентной подготовки, насос высокого давления, блок фильтрующих модулей, датчики и приборы управления. Основной элемент установки обратного осмоса – полупроницаемая обратноосмотическая мембрана, помещённая в корпус. В неё поступает исходная вода, а отводятся два потока – очищенная и обессоленная, которые называются пермеатом, и вода с концентрированными примесями, называемая концентратом, которая сливается. Продавливание воды через мембрану ведётся при высоком давлении, которое создает насос, обычно центробежный многоступенчатый или роторный. Для замедления образования нежелательных отложений на мембранах применяется дозирование ингибитора осадкообразования. Для снятия осадков с поверхности мембран используется система химпромывки. Для контроля качества очистки и рН – проточные измерители солесодержания и рН-метры. Для контроля расхода пермеата и концентрата – проточные расходомеры2. Физико-химические методы очисткиВ настоящее время в связи с использованием оборотных систем водоснабжения существенно увеличивается применение физико-химических методов очистки сточных вод, основными из которых являются флотация, экстракция, нейтрализация, сорбция, ионообменная и электрохимическая очистка, гиперфильтрация, эвапорация, выпаривание, испарение и кристаллизация. Данные методы используют для очистки от растворенных примесей, а в некоторых случаях и от взвешенных веществ. Многие методы физико-химической очистки требуют предварительного глубокого выделения из сточной воды взвешенных веществ, для чего широко используют процесс коагуляции. Коагулянты, или коагулирующие агенты (от лат. coagulo – вызываю свертывание, сгущение), – вещества, введение которых в жидкую среду, содержащую мелкие частицы какого-либо тела, вызывает слипание этих частиц. Под действием коагулянтов образуются крупные слипшиеся частицы, выпадающие в виде хлопьев или комков в осадок (коагулят). Эффективными коагулянтами для систем с водной дисперсионной средой являются соли поливалентных металлов (алюминия, железа и др.). В качестве коагулянтов используют также водорастворимые органические высокомолекулярные соединения (полимеры), особенно полиэлектролиты. В отличие от неорганических коагулянтов их иногда называют флокулянтами. Коагулянты применяют для выделения ценных промышленных продуктов из отходов производства в различных технологических процессах, а также при очистке воды от природных и бытовых загрязнений. Для очистки сточных вод на предприятиях используют и другие вещества в зависимости от вида загрязнения. Так, если в отработанной воде присутствует большое количество различных масел, то для очистки рекомендуется использовать соли магния (сульфат магния, хлорид магния); в химической промышленности используют алюмосиликатный раствор; сточные воды, насыщенные щелочью, очищают неорганическим коагулянтом, полученным из красного шлама (красный шлам содержит примеси оксидов металлов и представляет собой одну из самых важных проблем с утилизацией при производстве алюминия; красный цвет вызван присутствием оксида железа); для повышения экологической безопасности сточных вод используется активированный кальций-алюминат; на теплоэлектростанциях в последнее время применяют новейший коагулянт – минеральный полиреагентный гель-сорбент.Флотацияпредназначена для интенсификации процесса всплывания маслопродуктов при обволакивании их частиц пузырьками газа, подаваемого в сточную воду. В основе этого процесса имеет место молекулярное слипание частиц масла и пузырьков тонкодиспергированного в воде газа. Образование агрегатов «частица – пузырьки газа» зависит от интенсивности их столкновения друг с другом, химического взаимодействия содержащихся в воде веществ, избыточного давления газа в сточной воде и т. п. В зависимости от способа образования пузырьков газа различают следующие виды флотации: напорную, пневматическую, пенную, химическую, вибрационную, биологическую, электрофлотацию и др. Сточные воды, содержащие мелкую фракцию взвешенных веществ высокой концентрации (зооглеи активного ила) пропускают через флотационные установки или центрифуги.В настоящее время на станциях очистки широко используют электрофлотацию, так как протекающие при этом электрохимические процессы обеспечивают дополнительное обеззараживание сточных вод. Кроме того, применение для электрофлотации алюминиевых или стальных электродов обусловливает переход ионов алюминия или железа в раствор, что способствует коагулированию мельчайших частиц механических примесей сточной воды. Нейтрализация сточных вод. Сточные воды, содержащие минеральные кислоты или щелочи, перед сбросом их в водоемы или перед использованием в технологических процессах нейтрализуют. Практически нейтральными считаются воды, имеющие pH 6,5–8,5. Нейтрализацию можно проводить различными путями: смешением кислых и щелочных сточных вод, добавлением реагентов, фильтрованием кислых вод через нейтрализующие материалы, абсорбцией кислых газов щелочными водами или абсорбцией аммиака кислыми водами. В процессе нейтрализации могут образовываться осадки.Нейтрализация сточных вод предназначена для выделения из сточных вод кислот (H2SО4, НСl, HNO3, Н3РО4), щелочей (NaOH и КОН), а такжесолей металлов на основе указанных кислот и щелочей. Процесс нейтрализации основан на объединении ионов водорода и гидроксильной группы в молекулу воды, в результате чего сточная вода приобретает значение рН

Практическая работа № 5. Отходы производства и потребления

Практическая работа № 6. Санитарно-защитные зоны предприятий и иных объектов

Практическая работа № 7. Оценка здоровья населения как показатель экологического состояния в городах

Практическая работа № 8. Оценка экологического состояния водоемов по микробиологическим показателям

Практическая работа № 9. Экология региона

ВОПРОСЫ ДЛЯ ИТОГОВОГО КОНТРОЛЯ

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ



В последние годы все более широкое применение получают волокнистые сорбционно-активные материалы. Их отличает более высокая химическая и термическая стойкость, однородность пористой структуры, значительный объем микропор и более высокий коэффициент массопередачи (в 10–100 раз больше, чем у сорбционных материалов). Установки занимают значительно меньшую площадь. Адсорбционные методы являются одним из самых распространенных в промышленности способов очистки газов. Их применение позволяет вернуть в производство ряд ценных соединений.

Термическое дожигание представляет собой метод обезвреживания газов путем термического окисления различных вредных веществ, главным образом органических. Применение термических методов дожигания позволяет достичь 99 %-ной очистки газов.

Термические методы широко применяются для очистки отходящих газов от токсичных горючих соединений. Разработанные в последние годы установки дожигания отличаются компактностью и низкими энергозатратами. Применение термических методов эффективно для дожигания пыли многокомпонентных и запыленных отходящих газов.

Термокаталитические методы газоочистки отличаются универсальностью. С их помощью можно освобождать газы от оксидов серы и азота, различных органических соединений, монооксида углерода и других токсичных примесей. Каталитические методы позволяют преобразовывать вредные примеси в безвредные, менее вредные и даже полезные. Они дают возможность перерабатывать многокомпонентные газы с малыми начальными концентрациями вредных примесей, добиваться высоких степеней очистки, вести процесс непрерывно, избегать образования вторичных загрязнителей.

В качестве эффективных катализаторов, находящих применение на практике, служат самые различные вещества – от минералов, которые используются почти без всякой предварительной обработки, и простых массивных металлов до сложных соединений заданного состава и строения.

Каталитические методы обезвреживания получили наибольшее распространение.

Озонные методы применяют для обезвреживания дымовых газов от SO2 (NOx) и дезодорации газовых выбросов промышленных предприятий. Введение озона ускоряет реакции окисление NO до NO2 и SO2 до SO3. После образования NO
2 и SO3 в дымовые газы вводят аммиак и выделяют смесь образовавшихся комплексных удобрений (сульфата и нитрата аммония). Время контакта газа с озоном, необходимое для очистки от SO2 (80–90 %) и NOx (70–80 %), составляет 0,4–0,9 с. Энергозатраты на очистку газов озонным методом оценивают в 4–4,5 % от эквивалентной мощности энергоблока, что является, по-видимому, основной причиной, сдерживающей промышленное применение данного метода.

Основное применение озонные методы дезодорации находят при очистке газов, которые выделяются при переработке сырья животного происхождения на мясо-, жирокомбинатах и в быту.

Биохимические методы очистки основаны на способности микроорганизмов разрушать и преобразовывать различные соединения. Разложение веществ происходит под действием ферментов, вырабатываемых микроорганизмами в среде очищаемых газов. Биохимические системы более всего пригодны для очистки газов постоянного состава.

Биохимическую газоочистку проводят либо в биофильтрах, либо в биоскрубберах. В биофильтрах очищаемый газ пропускают через слой насадки, орошаемый водой, которая создает влажность, достаточную для поддержания жизнедеятельности микроорганизмов. Поверхность насадки покрыта биологически активной биопленкой (БП) из микроорганизмов.

Плазмокаталитический метод – это довольно новый способ очистки, который использует два известных метода – плазмохимический и каталитический. Установки, работающие на основе этого метода, состоят из двух ступеней. Первая – это плазмохимический реактор (озонатор), вторая – каталитический реактор. Газообразные загрязнители, проходя зону высоковольтного разряда в газоразрядных ячейках и взаимодействуя с продуктами электросинтеза, разрушаются и переходят в безвредные соединения, вплоть до CO2 и H2O. Глубина конверсии (очистки) зависит от величины удельной энергии, выделяющейся в зоне реакции. После плазмохимического реактора воздух подвергается финишной тонкой очистке в каталитическом реакторе.

При фотокаталитическом методе в основном используются катализаторы на основе TiO2, которые облучаются ультрафиолетом.

Аппараты очистки атмосферного воздуха

Для улавливания взвешенных частиц применяют различную аппаратуру. Наибольшее распространение получили циклонные аппараты для сухого механического пылеулавливания.



Очистка технологических и вентиляционных выбросов от взвешенных частиц пыли или тумана осуществляется в аппаратах следующих типов:

1. Механические сухие пылеуловители: пылеосадочные камеры различных конструкций, инерционные пыле- и брызгоуловители, циклоны и мультициклоны. Пылеосадочные камеры улавливают частицы размером более 40–50 мкм, инерционные пылеуловители – более 25–30 мкм, циклоны – 10–200 мкм.

2. Мокрые пылеуловители (скрубберы, пенные промыватели, трубы Вентури и др.) более эффективны, чем сухие механические аппараты. Скруббер улавливает частицы пыли размером более 10 мкм, а с помощью трубы Вентури – размером 1 мкм.

3. Фильтры (масленые, кассетные, рукавные и др.) улавливают частицы пыли размером от 0,5 мкм.

4. Электрофильтры применяются для тонкой очистки газов. Они улавливают частицы размером от 0,01 мкм.

5. Комбинированные пылеуловители (многоступенчатые, включающие не менее двух различных типов пылеуловителей).

Выбор типа пылеуловителя зависит от характера пыли (от размеров пылинок и её свойств; сухая, волокнистая, липкая пыль и т.д.), ценность данной пыли и необходимой степени очистки.

Сухие пылеуловители

1) Гравитационные. Простейшим типом пылеуловителей являются пылеосадочные камеры, относящиеся к гравитационным пылеуловителям. Их действие основано на том, что скорость потока запыленного воздуха, поступающего в камеру и расширяющегося в ней, уменьшается, вследствие чего находящиеся в нем твердые частицы осаждаются под влиянием собственного веса.

2) Инерционные пылеуловители. К сухим инерционным пылеуловителям относятся циклоны, струйные ротационные пылеуловители типа ротоклон и др.

Циклоны представляют собой аппараты, в которых улавливание пыли происходит в результате инерционной сепарации. Циклоны широко применяются для очистки от пыли вентиляционных выбросов, а также находят большое распространение во многих отраслях промышленности (горнорудной, керамической, энергетической и др.).

Мокрые пылеуловители

Инерционные пылеуловители.
К мокрым инерционным пылеуловителям относятся центробежные скрубберы, циклоны-промыватели, пылеуловители Вентури и др. Степень очистки в скруббере колеблется от 86 до 99 % и повышается с увеличением удельного веса пыли, скорости движения воздуха во входном патрубке и с уменьшением диаметра корпуса.

Циклоны-промыватели применяют для очистки воздуха от различных видов пыли, кроме цементирующихся и волокнистых.

Пылеуловитель Вентури используют главным образом для очистки газов на предприятиях металлургической, химической и других отраслей промышленности, а также для улавливания пыли из вентиляционных выбросов. Действие пылеуловителя Вентури (турбулентного промывателя) основано на использовании энергии газового потока для распыления впрыскиваемой воды.

Пенные пылеуловители применяют для очистки от пыли нейтральных газов с температурой до 100 °С, которые не образуют в процессе промывки водой кристаллизующихся солей, забивающих отверстия решеток или отлагающихся на поверхностях аппарата.

Пылеуловители других типов

Тканевые пылеуловители. При их применении степень очистки воздуха может составлять 99 % и более. При пропускании запыленного воздуха через ткань содержащаяся в нем пыль задерживается в порах фильтрующего материала или на слое пыли, накапливающейся на его поверхности. Тканевые пылеуловители по форме фильтрующей поверхности выполняют рукавными и рамочными. В качестве фильтрующего материала применяют хлопчатобумажные ткани, фильтр-сукно, капрон, шерсть, нитрон, лавсан, стеклоткань и различные сетки. Тканевые рукавные пылеуловители получили большое распространение для улавливания тонких и грубых фракций пыли.

Электрические пылеуловители. Эффективность электрического пылеуловителя зависит от свойств очищаемого газа (воздуха) и улавливаемой пыли, загрязнения пылью осадительных и коронирующих электродов, электрических параметров пылеуловителя, скорости движения газа и равномерности его распределения в электрическом поле.

В электропылеуловителях содержащиеся в воздухе частицы пыли приобретают заряд и осаждаются на осадительных электродах. Эти процессы происходят в электрическом поле, образованном двумя электродами с разноименными зарядами. Один из электродов является одновременно и осадителем.

Фильтры.
Воздушные фильтры могут быть разделены на три класса, из которых фильтры I класса задерживают пылевые частицы всех размеров (при низшем пределе эффективности очистки атмосферного воздуха 99 %), фильтры II класса – частицы размером более 1 мкм (при эффективности 85 %) и фильтры III класса – частицы размером от 10 до 50 мкм (при эффективности 60 %).

Фильтры I класса (волокнистые) задерживают пылевые частицы всех размеров в результате диффузии и соприкасания, а также крупные частицы за счет их зацепления волокнами, заполняющими фильтр.

В фильтрах II класса (с более толстыми волокнами) частицы мельче 1 мкм задерживаются не полностью. Более крупные частицы эффективно задерживаются в результате механического зацепления и инерции. Задержание частиц крупнее 4–5 мкм в сухих фильтрах этого класса малоэффективно.

В фильтрах III класса, заполненных более толстыми волокнами, проволокой, перфорированными и зигзагообразными листами и т. п., в основном действует инерционный эффект. Для уменьшения пор и каналов в заполнении фильтров последние смачиваются. Эффективность и сопротивление фильтров внутри каждого из классов неодинаковы.

Сухие пористые фильтры. Рулонный волокнистый фильтр ФРУ выполнен в виде коробчатого каркаса, через сечение которого протекает очищаемый воздух. Каркас в верхней и нижней частях имеет катушки-барабаны. На верхнюю катушку наматывается в виде рулона фильтрующий материал, полотнище которого пропускается через живое сечение фильтра и закрепляется на нижней катушке. Воздух, проходя через полотнище, оставляет в нем пыль.

Химический и физический состав выбросов

Под загрязнением атмосферы следует понимать изменение ее состава при

поступлении примесей естественного или антропогенного происхождения. Вещества-загрязнители бывают трех видов: газы, пыль и аэрозоли. К последним относятся диспергированные твердые частицы, выбрасываемые в атмосферу и находящиеся в ней длительное время во взвешенном состоянии. К основным загрязнителям атмосферы относятся углекислый газ, оксид углерода, диоксиды серы и азота, а также малые газовые составляющие, способные оказывать влияние на температурный режим тропосферы: диоксид азота, галогенуглероды (фреоны), метан и тропосферный озон.

Основной вклад в высокий уровень загрязнения воздуха вносят предприятия черной и цветной металлургии, химии и нефтехимии, строительной индустрии, энергетики, целлюлозно-бумажной промышленности, а в некоторых городах и котельные.