Файл: Задания 20. Короткий алгоритм в среде формального исполнителя или на языке программирования Вариант 20. 1.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 30.11.2023

Просмотров: 961

Скачиваний: 4

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Последовательность команд — это одна или не­сколь­ко любых команд-приказов. Например, для пе­ре­дви­же­ния на одну клет­ку вправо, если спра­ва нет стенки, и за­кра­ши­ва­ния клет­ки можно ис­поль­зо­вать такой алгоритм:

если спра­ва сво­бод­но то

вправо

закрасить

все

 В одном усло­вии можно ис­поль­зо­вать не­сколь­ко ко­манд про­вер­ки условий, при­ме­няя ло­ги­че­ские связ­ки и, или, не, например:

 если (справа свободно) и (не снизу свободно) то

вправо

все

 Для по­вто­ре­ния по­сле­до­ва­тель­но­сти ко­манд можно ис­поль­зо­вать цикл «пока», име­ю­щий сле­ду­ю­щий вид:

 нц пока условие

последовательность команд

кц

 Например, для дви­же­ния вправо, пока это возможно, можно ис­поль­зо­вать сле­ду­ю­щий алгоритм:

 нц пока спра­ва сво­бод­но

вправо

кц

 

Выполните задание.

 На бес­ко­неч­ном поле име­ет­ся стена, длины от­рез­ков стены неизвестны. Стена со­сто­ит из од­но­го вер­ти­каль­но­го и трёх рав­ных го­ри­зон­таль­ных от­рез­ков (отрезки стены рас­по­ло­же­ны бук­вой «Е»). Все от­рез­ки не­из­вест­ной длины. Робот на­хо­дит­ся в клетке, рас­по­ло­жен­ной не­по­сред­ствен­но слева от ниж­не­го конца вер­ти­каль­но­го отрезка. На ри­сун­ке ука­зан один из воз­мож­ных спо­со­бов рас­по­ло­же­ния стен и Ро­бо­та (Робот обо­зна­чен буквой «Р»).

 Напишите для Ро­бо­та алгоритм, за­кра­ши­ва­ю­щий все клетки, рас­по­ло­жен­ные под верх­ним го­ри­зон­таль­ным от­рез­ком стены. Робот дол­жен за­кра­сить толь­ко клетки, удо­вле­тво­ря­ю­щие дан­но­му условию. Например, для приведённого спра­ва ри­сун­ка Робот дол­жен за­кра­сить сле­ду­ю­щие клет­ки (см. рисунок).

 Конечное рас­по­ло­же­ние Ро­бо­та может быть произвольным. При ис­пол­не­нии ал­го­рит­ма Робот не дол­жен разрушиться. Ал­го­ритм дол­жен ре­шать за­да­чу для про­из­воль­но­го раз­ме­ра поля и лю­бо­го до­пу­сти­мо­го рас­по­ло­же­ния стен.

 Алгоритм может быть вы­пол­нен в среде фор­маль­но­го ис­пол­ни­те­ля или за­пи­сан в тек­сто­вом редакторе.

 

 

 

 Задания 20. Короткий алгоритм в среде формального исполнителя или на языке программирования



Вариант 47.

20.1 Ис­пол­ни­тель Робот умеет пе­ре­ме­щать­ся по лабиринту, на­чер­чен­но­му на плоскости, раз­би­той на клетки. Между со­сед­ни­ми (по сторонам) клет­ка­ми может сто­ять стена, через ко­то­рую Робот прой­ти не может.

У Ро­бо­та есть де­вять команд. Че­ты­ре команды — это команды-приказы:

 вверх вниз влево вправо

При вы­пол­не­нии любой из этих ко­манд Робот пе­ре­ме­ща­ет­ся на одну клет­ку соответственно: вверх ↑ вниз ↓, влево ← , впра­во →. Если Робот по­лу­чит ко­ман­ду пе­ре­дви­же­ния сквозь стену, то он разрушится.

Также у Ро­бо­та есть ко­ман­да закрасить, при ко­то­рой за­кра­ши­ва­ет­ся клетка, в ко­то­рой Робот на­хо­дит­ся в на­сто­я­щий момент.

Ещё че­ты­ре команды —  это ко­ман­ды про­вер­ки условий. Эти ко­ман­ды проверяют, сво­бо­ден ли путь для Ро­бо­та в каж­дом из четырёх воз­мож­ных направлений:

 сверху свободно  снизу свободно  слева свободно  спра­ва свободно

Эти ко­ман­ды можно ис­поль­зо­вать вме­сте с усло­ви­ем «если», име­ю­щим сле­ду­ю­щий вид:

 если условие то

последовательность команд

все

 Здесь условие — одна из ко­манд про­вер­ки условия. Последовательность команд — это одна или не­сколь­ко любых команд-приказов. Например, для пе­ре­дви­же­ния на одну клет­ку вправо, если спра­ва нет стенки, и за­кра­ши­ва­ния клет­ки можно ис­поль­зо­вать такой алгоритм:

если спра­ва сво­бод­но то

вправо

закрасить

все

 В одном усло­вии можно ис­поль­зо­вать не­сколь­ко ко­манд про­вер­ки условий, при­ме­няя ло­ги­че­ские связ­ки и, или, не, например:

 если (справа свободно) и (не снизу свободно) то

вправо

все

 Для по­вто­ре­ния по­сле­до­ва­тель­но­сти ко­манд можно ис­поль­зо­вать цикл «пока», име­ю­щий сле­ду­ю­щий вид:

 нц пока условие

последовательность команд

кц

 Например, для дви­же­ния вправо, пока это возможно, можно ис­поль­зо­вать сле­ду­ю­щий алгоритм:

 нц пока спра­ва сво­бод­но

вправо

кц

 


Выполните задание.

 На бес­ко­неч­ном поле име­ет­ся стена, длины от­рез­ков стены неизвестны. Стена со­сто­ит из од­но­го вер­ти­каль­но­го и трёх рав­ных го­ри­зон­таль­ных от­рез­ков (отрезки стены рас­по­ло­же­ны бук­вой «Е»). Все от­рез­ки не­из­вест­ной длины. Робот на­хо­дит­ся в клетке, рас­по­ло­жен­ной не­по­сред­ствен­но слева от верх­не­го конца вер­ти­каль­но­го отрезка. На ри­сун­ке ука­зан один из воз­мож­ных спо­со­бов рас­по­ло­же­ния стен и Ро­бо­та (Робот обо­зна­чен бук­вой «Р»).

 Напишите для Ро­бо­та алгоритм, за­кра­ши­ва­ю­щий все клетки, рас­по­ло­жен­ные над ниж­ним го­ри­зон­таль­ным от­рез­ком стены. Робот дол­жен за­кра­сить толь­ко клетки, удо­вле­тво­ря­ю­щие дан­но­му условию. Например, для приведённого спра­ва ри­сун­ка Робот дол­жен за­кра­сить сле­ду­ю­щие клет­ки (см. рисунок).

 Конечное рас­по­ло­же­ние Ро­бо­та может быть произвольным. При ис­пол­не­нии ал­го­рит­ма Робот не дол­жен разрушиться. Ал­го­ритм дол­жен ре­шать за­да­чу для про­из­воль­но­го раз­ме­ра поля и лю­бо­го до­пу­сти­мо­го рас­по­ло­же­ния стен.

 Алгоритм может быть вы­пол­нен в среде фор­маль­но­го ис­пол­ни­те­ля или за­пи­сан в тек­сто­вом редакторе.

 

 

 

 Задания 20. Короткий алгоритм в среде формального исполнителя или на языке программирования

Вариант 48.

20.1 Ис­пол­ни­тель Робот умеет пе­ре­ме­щать­ся по лабиринту, на­чер­чен­но­му на плоскости, раз­би­той на клетки. Между со­сед­ни­ми (по сторонам) клет­ка­ми может сто­ять стена, через ко­то­рую Робот прой­ти не может.

У Ро­бо­та есть де­вять команд. Че­ты­ре команды — это команды-приказы:

 вверх вниз влево вправо

При вы­пол­не­нии любой из этих ко­манд Робот пе­ре­ме­ща­ет­ся на одну клет­ку соответственно: вверх ↑ вниз ↓, влево ← , впра­во →. Если Робот по­лу­чит ко­ман­ду пе­ре­дви­же­ния сквозь стену, то он разрушится.

Также у Ро­бо­та есть ко­ман­да закрасить, при ко­то­рой за­кра­ши­ва­ет­ся клетка, в ко­то­рой Робот на­хо­дит­ся в на­сто­я­щий момент.

Ещё че­ты­ре команды —  это ко­ман­ды про­вер­ки условий. Эти ко­ман­ды проверяют, сво­бо­ден ли путь для Ро­бо­та в каж­дом из четырёх воз­мож­ных направлений:

 сверху свободно  снизу свободно  слева свободно  спра­ва свободно

Эти ко­ман­ды можно ис­поль­зо­вать вме­сте с усло­ви­ем «если», име­ю­щим сле­ду­ю­щий вид:

 если условие то

последовательность команд


все

 Здесь условие — одна из ко­манд про­вер­ки условия. Последовательность команд — это одна или не­сколь­ко любых команд-приказов. Например, для пе­ре­дви­же­ния на одну клет­ку вправо, если спра­ва нет стенки, и за­кра­ши­ва­ния клет­ки можно ис­поль­зо­вать такой алгоритм:

если спра­ва сво­бод­но то

вправо

закрасить

все

 В одном усло­вии можно ис­поль­зо­вать не­сколь­ко ко­манд про­вер­ки условий, при­ме­няя ло­ги­че­ские связ­ки и, или, не, например:

 если (справа свободно) и (не снизу свободно) то

вправо

все

 Для по­вто­ре­ния по­сле­до­ва­тель­но­сти ко­манд можно ис­поль­зо­вать цикл «пока», име­ю­щий сле­ду­ю­щий вид:

 нц пока условие

последовательность команд

кц

 Например, для дви­же­ния вправо, пока это возможно, можно ис­поль­зо­вать сле­ду­ю­щий алгоритм:

 нц пока спра­ва сво­бод­но

вправо

кц

В ыполните задание. На бес­ко­неч­ном поле име­ет­ся вер­ти­каль­ная стена. Длина стены неизвестна. От верх­не­го конца стены впра­во от­хо­дит го­ри­зон­таль­ная стена также не­из­вест­ной длины. Робот на­хо­дит­ся в клетке, рас­по­ло­жен­ной слева от ниж­не­го края вер­ти­каль­ной стены.

На ри­сун­ке ука­зан один из воз­мож­ных спо­со­бов рас­по­ло­же­ния стен и Ро­бо­та (Робот обо­зна­чен бук­вой «Р»).

Напишите для Ро­бо­та алгоритм, за­кра­ши­ва­ю­щий все клетки, рас­по­ло­жен­ные левее вер­ти­каль­ной стены и выше го­ри­зон­таль­ной стены и при­ле­га­ю­щие к ним. Робот дол­жен за­кра­сить толь­ко клетки, удо­вле­тво­ря­ю­щие дан­но­му условию. Например, для приведённого выше ри­сун­ка Робот дол­жен за­кра­сить сле­ду­ю­щие клет­ки (см. рисунок).

Конечное рас­по­ло­же­ние Ро­бо­та может быть произвольным. Ал­го­ритм дол­жен ре­шать за­да­чу для про­из­воль­но­го раз­ме­ра поля и лю­бо­го до­пу­сти­мо­го рас­по­ло­же­ния стен внут­ри пря­мо­уголь­но­го поля. При ис­пол­не­нии ал­го­рит­ма Робот не дол­жен разрушиться. Ал­го­ритм на­пи­ши­те в тек­сто­вом ре­дак­то­ре и со­хра­ни­те в тек­сто­вом файле. На­зва­ние файла и ка­та­лог для со­хра­не­ния Вам со­об­щат ор­га­ни­за­то­ры экзамена.