ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 02.12.2023
Просмотров: 32
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Принципы криптографической защиты информации.
Криптографические методы защиты основаны на возможности осуществления некой операции преобразования информации, которая может выполняться одним (или более) пользователем ИС, обладающим некоторой секретной частью дополнительной информации.
В классической криптографии используется только одна единица конфиденциальной и обязательно секретной информации — ключ, знание которого позволяет отправителю зашифровать информацию, а получателю — расшифровать ее. Именно эта операция зашифрования/расшифрования с большой вероятностью невыполнима без знания секретного ключа.
В криптографии с открытым ключом имеется два ключа, по крайней мере один из которых нельзя вычислить из другого. Один ключ используется отправителем для зашифрования информации, сохранность которой должна быть обеспечена. Другой — получателем для обработки полученной информации. Бывают приложения, в которых один ключ должен быть несекретным, а другой — секретным.
Основным достоинством криптографических методов защиты информации является обеспечение ими гарантированной стойкости защиты, которую можно рассчитать и выразить в числовой форме (средним числом операций или количеством времени, необходимым для раскрытия зашифрованной информации или вычисления ключей).
Средства шифрования могут быть реализованы как аппаратно, так и чисто программно. В любом случае они должны быть сертифицированными, т.е. должны соответствовать определенным требованиям (стандартам). В противном случае, они не могут гарантировать пользователям необходимую стойкость шифрования.
Использование в системе защиты для различных целей нескольких однотипных алгоритмов шифрования нерационально. Оптимальным вариантом можно считать систему, в которой средства криптозащиты — общесистемные, т.е. выступают в качестве расширения функций операционной системы и включают сертифицированные алгоритмы шифрования всех типов (блочные и потоковые, с закрытыми и открытыми ключами).
Прозрачное шифрование всей информации на дисках, что широко рекомендуется рядом разработчиков средств защиты, оправдано лишь в том случае, когда компьютер используется только одним пользователем и объемы дисков невелики. Но на практике даже персональные компьютеры используются группами из нескольких пользователей. И не только потому, что ПК на всех не хватает, но и в силу специфики работы защищенных систем. Так, автоматизированные рабочие места операторов систем
управления используются двумя-четырьмя операторами, работающими посменно, и рассматривать их как одного пользователя нельзя в силу требований разделения ответственности.
Очевидно, что в такой ситуации приходится либо отказаться от разделения ответственности и разрешить пользоваться ключом шифра нескольким операторам, либо создавать отдельные закрытые диски для каждого из них и запретить им тем самым обмен закрытой информацией, либо часть информации хранить и передавать в открытом виде, что по сути равносильно отказу от концепции прозрачного шифрования всей информации на дисках.
Кроме того, прозрачное шифрование дисков требует значительных накладных расходов ресурсов системы (времени и производительности). И не только непосредственно в процессе чтения-записи данных. Дело в том, что надежное криптографическое закрытие информации предполагает периодичес-кую смену ключей шифрования, а это приводит к необходимости перешиф-рования всей информации на диске с использованием нового ключа (необходимо всю информацию расшифровать с использованием старого и зашифровать с использованием нового ключа). Это требует значительного времени. Кроме того, при работе в системе с шифрованными дисками задержки возникают не только при обращении к данным, но и при запуске программ, что значительно замедляет работу компьютера. Поэтому, использовать криптографическую защиту следует ограниченно, защищая только ту информацию, которую действительно надо закрыть от несанкционированного доступа.
Основные сведения о криптографии. Под криптологией (от греческого kruptos — тайный и logos сообщение) понимается наука о безопасности (секретности) связи.
Криптология делится на две части: криптографию (шифрование) и криптоанализ. Криптограф пытается найти методы обеспечения секретности и или аутентичности (подлинности) сообщений. Криптоаналитик пытается выполнить обратную задачу: раскрыть шифртекст или подделать его так, чтобы он был принят как подлинный.
Одним из основных допущений криптографии является то, что криптоаналитик противника имеет полный шифртекст и ему известен алгоритм шифрования, за исключением секретного ключа. При этих допущениях криптограф разрабатывает систему, стойкую при анализе только на основе шифротекста. На практике допускается некоторое усложнение задачи криптографа. Криптоаналитик противника может иметь фрагменты открытого текста и соответствующего ему шифротекста. В этом случае криптограф разрабатывает систему стойкую при анализе на основе открытого текста. Криптограф может даже допустить, что криптоаналитик противника способен ввести свой открытый текст и получить правильный шифртекст с помощью секретного ключа (анализ на основе выбранного открытого текста), и наконец, — объединить две последние возможности (анализ на основе выбранного текста).
Многие из стратегий нарушителя могут быть блокированы с помощью криптографических средств защиты информации, но следует отметить, что большинство стратегий нарушителя связано с проблемами аутентичности пользователя и сообщений.
Подсистема криптографической защиты.Подсистема объединяет средства криптографической защиты информации и предназначена для обеспечения целостности, конфиденциальности, аутентичности критичной информации, а также обеспечения юридической значимости электронных документов в ИС. По ряду функций подсистема кооперируется с подсистемой защиты от НСД. Поддержку подсистемы криптографической защиты в части управления ключами осуществляет подсистема управления СЗИ.
Структурно подсистема состоит из:
♦ программных средств симметричного шифрования данных;
♦ программно-аппаратных средств цифровой подписи электронных документов (ПАС ЦП). Функции подсистемы предусматривают;
♦ обеспечение целостности передаваемой по каналам связи и хранимой информации;
♦ имитозащиту сообщений, передаваемых по каналам связи;
♦ скрытие смыслового содержания конфиденциальных сообщений, передаваемых по каналам связи и хранимых на носителях;
♦ обеспечение юридической значимости электронных документов;
♦ обеспечение аутентификации источника данных.
Функции подсистемы направлены на ликвидацию наиболее распространенных угроз сообщениям в автоматизированных системах:
♦ угрозы, направленные на несанкционированное ознакомление с информацией;
♦ несанкционированное чтение информации на машинных носителях и в ЗУ ЭВМ;
♦ незаконное подключение к аппаратуре и линиям связи;
♦ снятие информации на шинах питания;
♦ перехват ЭМИ с линий связи;
♦ угрозы, направленные на несанкционированную модификацию (нарушение целостности) информации:
♦ изменение служебной или содержательной части сообщения;
♦ подмена сообщения;
♦ изъятие (уничтожение) сообщения.
♦ угрозы, направленные на искажение аутентичности отправителя сообщения:
♦ незаконное присвоение идентификаторов другого пользователя, формирование и отправка электронного документа от его имени (маскарад), либо утверждение, что информация получена от некоего пользователя, хотя она сформирована самим нарушителем;
♦ повторная передача документа
, сформированного другим пользователем;
♦ искажение критичных с точки зрения аутентичности полей документа (даты формирования, порядкового номера, адресных данных, идентификаторов отправителя и получателя и др.).
♦ угрозы, связанные с непризнанием участия:
♦ отказ от факта формирования электронного документа;
♦ отказ от факта получения электронного документа или ложные сведения о времени его получения;
♦ утверждение, что получателю в определенный момент была послана информация, которая в действительности не посылалась (или посылалась в другое время).
Аутентичность сообщений. Конечной целью шифрования является обеспечение защиты информации от несанкционированного ознакомления, аутентификации обеспечения защиты участников информационного обмена от обмана, осуществляемого на основе имитации, т.е., например подделки шифртекста до прихода подлинного шифртекста, подмены (навязывании) ложной информации после прихода подлинного шифртекста.
Под аутентификацией информации понимается установление подлинности информации исключительно на основе внутренней структуры самой информации независимо от источника этой информации, установление законным получателем (возможно арбитром) факта, что полученная информация наиболее вероятно была передана законным отправителем (источником) и что она при этом не заменена и не искажена.
Любые преднамеренные и случайные попытки искажений информации обнаруживаются с определенной вероятностью. Наиболее полно проблема аутентичности проявляется в вычислительных сетях, где можно выделить следующие ее виды:
Аутентификация пользователя сети — установление подлинности личности пользователя сети, которому требуется доступ к защищаемой информации или необходимо подключиться к сети;
Аутентификация сети — установление подлинности сети, к которой получен доступ;
Аутентификация хранящихся массивов программ и данных — установление факта, что данный массив не был изменен в течение времени, когда он был вне посредственного контроля, а также решение вопросов об авторстве этого массива данных;
Аутентификация сообщений
— установление подлинности содержания полученного по каналам связи сообщения и решение вопросов об авторстве сообщения.
Решение указанных задач возможно как с применением классических систем шифрования, так и систем с открытым ключом.
Криптографические методы защиты информации основаны на использовании криптографических систем, или шифров. Криптосистемы позволяют с высокой степенью надежности защитить информацию путем ее специального преобразования. В криптопреобразовании используется один или несколько секретных параметров, неизвестных злоумышленнику, на чем и основана стойкость криптосистем.
Криптосистемы подразделяются на симметричные и несимметричные. В симметричных системах преобразование (шифрование) сообщения и обратное преобразование (дешифрование) выполняются с использованием одного и того же секретного ключа, которым сообща владеют отправитель и получатель сообщения. В несимметричных системах, или системах с открытым ключом, каждый пользователь имеет свою ключевую пару, состоящую из ключа шифрования и ключа дешифрования (открытого и секретного ключа), при этом открытый ключ известен остальным пользователям.
Основными методами являются шифрование, цифровая подпись и имитозащита сообщений.
Шифрование сообщений позволяет преобразовать исходное сообщение (открытый текст) к нечитаемому виду; результат преобразования называют шифротекстом. Злоумышленник без знания секретного ключа шифрования не имеет возможности дешифровать шифротекст. Для шифрования сообщений, как правило, используются симметричные криптосистемы.
Шифрование обеспечивает:
♦ скрытие содержания сообщения;
♦ аутентификацию источника данных, только владелец секретного ключа мог сформировать и отправить шифротекст; однако электронный документ не имеет при этом юридической значимости, так как возможен подлог со стороны получателя, также владеющего секретным ключом.
Цифровая подпись обеспечивает:
♦ аутентификацию источника данных, только владелец секретного несимметричного ключа мог сформировать цифровую подпись; получатель имеет только открытый ключ, на котором подпись может быть проверена, в том числе и независимой третьей стороной;
♦ целостность сообщения: