Файл: Сводка и группировка статистических данных.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 03.12.2023

Просмотров: 106

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Сводка и группировка статистических данных.

Сводка может быть различной в зависимости от ряда характеризующих ее признаков.

По форме обработки материала сводка бывает:

По технике исполнения сводка может быть компьютерной и ручной.

Группировка организаций по формам собственности

Группировка постоянного населения по возрастным группам

По способу построения группировки бывают простые и комбинационные.

Интервалы группировок могут быть закрытыми и открытыми.

Тема 4. Способы наглядного представления статистических данных

Название таблицы (общий заголовок)

Различают простые, групповые и комбинационные таблицы.

Наличие строительных машин в строительных управлениях региона

Группировка продовольственных магазинов города по части площади торгового зала и длительности рабочего дня за отчетный период

Статистический график и его элементы

Простая столбиковая диаграмма

Простая ленточная диаграмма

Секторная диаграмма

????i????

Чем больше размах вариации признака, положенного в основание группировки, тем, как правило, может быть образовано большее число групп. При этом может возникнуть проблема получения пустых групп, т.е. групп, не содержащих ни одной единицы наблюдения.

Построение большого числа групп позволит, с одной стороны, точнее воспроизвести характер исследуемого объекта. Однако, с другой стороны, слишком большое число групп затрудняет выявление закономерностей при исследовании социально-экономических явлений и процессов. Поэтому в каждом конкретном случае при определении числа групп следует исходить не только из степени колеблемости признака, но и из особенностей объекта и показателей, его характеризующих, а также цели исследования.

Определение числа групп можно осуществить несколькими способами.

Формально-математический способ предполагает использование формулы Стерджесса:

n = 1 + 3,322 × lg N,

n число групп;

N число единиц совокупности.

Согласно этой формуле выбор числа групп зависит только от объема изучаемой совокупности. Когда определено число групп, то следует определить интервалы группировки.

Интервал – это значения варьирующего признака, лежащие в определенных границах. Каждый интервал имеет верхнюю и нижнюю границы или одну из них. Нижней границей интервала называется наименьшее значение признака в интервале. Верхней границей интервала называется наибольшее значение признака в интервале.

Величина интервала
- разность между верхней и нижней границами интервала. Интервалы группировки бывают равные и неравные, открытые и закрытые.

В зависимости от величины интервалы группировки бывают: равные и неравные. В свою очередь, неравные интервалы подразделяются на прогрессивно возрастающие, прогрессивно убывающие, произвольные и специализированные.

Равныеинтервалыприменяются в случае, если изменение количественного признака внутри изучаемой совокупности единиц наблюдения происходит равномерно и его вариация проявляется в сравнительно узких границах.

Ширина равного интервала определяется по следующей формуле:

= ???? = ???????????????? ????????i????



???? ????

где: ???????????????? ????????i???? ‒ максимальное и минимальное значения признака в совокупности; n - число групп.

Если максимальные или минимальные значения сильно отличаются от смежных с ними значений вариантов в упорядоченном ряду значений группировочного признака, то для определения величины интервала следует использовать не максимальное или минимальное значения, а значения, несколько превышающие минимум, и несколько меньше, чем максимум.

Полученную по формуле величину округляют, и она будет являться шириной интервала.

Существуют следующие правила определения ширины интервала.

Если величина интервала, рассчитанная по формуле представляет собой величину, которая

имеет один знак до запятой (например: 0,67; 1,487; 3,82), то в этом случае полученные значения целесообразно округлить до десятых и их использовать в качестве ширины интервала.

Если рассчитанная величина интервала имеет две значащие цифры до запятой и несколько после запятой (например 14,876), то это значение необходимо округлить до целого числа (до 15).

В случае, когда рассчитанная величина интервала представляет собой трехзначное, четырехзначное и так далее число, то эту величину следует округлить до ближайшего числа, кратного 100 или 50. Например, 652 следует округлить до 650 или до 700.

Если размах вариации признака в совокупности велик и значения признака варьируют неравномерно, то надо использовать группировку с неравными интервалами. Неравные интервалы могут быть получены в процессе объединения пустых, не содержащих ни одной единицы совокупности, равных интервалов. Это происходит в том случае, если после построения равных интервалов по изучаемому признаку образуются группы, содержащие мало или не содержащие вообще ни одной единицы, т.е. группы, не отражающие определенных типов изучаемого явления по признаку. В этом случае возникает необходимость в увеличении интервалов группировки.

Также неравные интервалы могут быть прогрессивно-возрастающие или прогрессивно-убывающие в арифметической или геометрической прогрессии. Величина интервалов, изменяющихся в арифметической и геометрической прогрессии, определяется следующим образом:


а в геометрической прогрессии:

i+1 = i + ????
i+1 = i + ????


где: а константа: для прогрессивно-возрастающих интервалов имеет знак «+», а при прогрессивно-убывающих знак «‒».

q – константа: для прогрессивно-возрастающих – больше «1»; для прогрессивно- убывающих – меньше «1».

Применение неравных интервалов обусловлено тем, что в первых группах небольшая разница в показателях имеет большое значение, а в последних группах эта разница не существенна.

Например, при построении группировки строительных компаний города, по показателю численности работающих, который варьирует от 500 человек до 3500 человек, нецелесообразно рассматривать равные интервалы, т. к. учитываются как малые, так и крупнейшие строительные фирмы города. Поэтому следует образовывать неравные интервалы: 500 ‒ 1000, 1000 ‒ 2000, 2000 ‒ 3500, т. е. величина каждого последующего интервала больше предыдущего на 500 человек и увеличивается в арифметической прогрессии.

Выбор исследователя в построении равных или неравных интервалов зависит от степени заполнения каждой выделенной группы, т.е. от числа единиц в них. Если величина интервала существенна и содержит большое число единиц совокупности, то эти интервалы необходимо дробить, а в противном случае объединять.

Интервалы группировок могут быть закрытыми и открытыми.


Закрытыминазываются интервалы, у которых имеются обе границы: верхняя и нижняя границы.

Открытые – это интервалы, у которых указана только одна граница: как правило, верхняя у первого интервала и нижняя у последнего. Например, группы страховых компаний по числу работающих в них сотрудников (чел.): до 50, 50 100, 100

150, 150 и более.

Применение открытых интервалов целесообразно в тех случаях, когда в совокупности встречается незначительное число единиц наблюдения с очень малыми или очень большими значениями вариантов, которые резко, в несколько раз, отличаются от всех остальных значений изучаемого признака.

При группировке единиц совокупности по количественному признаку границы интервалов могут быть обозначены по-разному, в зависимости от того, непрерывный или дискретный признак положен в основание группировки.

Если основанием группировки служит непрерывный признак (например, группы строительных фирм по объему строительно-монтажных работ, выполненных собственными силами (тыс. руб.): 1200 ‒ 1400, 1400 ‒ 1600, 1600 ‒ 1800, 1800 ‒ 2000), то одно и то же значение признака выступает и верхней и нижней границами двух смежных интервалов. В данном случае объем работ 1400 тыс. руб. составляет верхнюю границу первого интервала и нижнюю границу второго, 1600 тыс. руб. – соответственно второго и третьего и т.д., т.е. верхняя граница i го интервала равна нижней границе (i+1)

го интервала.