Файл: Введение Автоматизация является одним из важнейших факторов роста производительности труда в промышленном производстве.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 03.12.2023

Просмотров: 1107

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

3.2 Функции контроляКонтроль засорения фильтраДля очистки воздуха от мелких предметов и от пыли на входе воздуха в систему установлен фильтр. Со временем фильтр засоряется, что приводит к увеличении нагрузки на двигателе. Для контроля засорения фильтра устанавливают реле давления, которое измеряет перепад давления до и после фильтра. В случае срабатывания реле, его контакт передает сигнал в щит управления.Контроль работы двигателяДля контроля работы двигателя устанавливают реле давления, которое меряет наличие перепада давления до и после двигателя. Во время работы двигателя контакт датчика реле давления находится в замкнутом состоянии. В случае остановки двигателя (пропадания напряжения на двигателе и других возможных аварий) контакт датчика реле давления размыкается, и сигнал передается в щит управления.Контроль температуры воды в обратном трубопроводеВ дежурном режиме воздушный клапан закрыт, вентилятор выключены. Регулирование осуществляется по температуре Тобр, которая поддерживается равной Тобр.зад. При превышении температуры Тобр над заданным значением контроллер переключается на ее регулирование с целью недопущения перегрева воды, возвращаемой в тепловую сеть. Контроль превышения Тобр активизируется с задержкой после включения вентилятора. При снижении температуры Тобр ниже значения Тзмр система переключается в режим прогрева с целью предотвращения замораживания калорифера.Функции регулирования.Во время работы системы температура приточного воздуха Tпр.в поддерживается равной заданной 22 °С. Сигнал с датчика температурыприточного воздуха поступает на вход ПИ регулятора контроллера, который вырабатывает управляющий сигнал на открытие или закрытия клапана. В зимний период работы, подогревая воздух, а в летний охлаждая. Регулирование температуры осуществляется с помощью регулирующего клапана.автоматизация вентиляция вытяжной регулирование3.3 Функции измеренияСистема автоматики обрабатывает сигналы, поступающие на вход (Тн.в., Тпр.в., Тобр) по заданной программе и формирует сигналы управления и регулирования, а также отображая значение температуры.3.4 Функции управленияУправление системой осуществляется в ручном режиме с помощью кнопок и переключателей, расположенных на панели управления за дверцей щита и в автоматическом режиме. Управление запуском насосов и двигателей происходит с контроллера при благоприятных параметрах системы.3.5 Описание функциональной схемыНа функциональной схеме показан принцип автоматизированного управления приточной и вытяжной вентиляции, чертеж ДП АТ061 К897 Э2.Во время работы системы наружный воздух, через воздухозаборную решетку, поступает в приточную установку, проходит через открытый воздушный клапан, затем через шумоглушитель проходит в секцию карманного фильтра. После этого очищенный воздух проходит через секцию нагрева и в зимний режим работы подогревается до температуры 22 °С. Затем воздух проходит через камеру охлаждения и в летнем режиме работы охлаждается. Дальше воздух попадает в секцию вентилятора, где создается напор и после секции шумоглушителя по воздуховодам попадает в обслуживаемые помещения.Температура приточного воздуха измеряется датчиком (16а). Измеренная температура передается в щит управления, и контроллер вырабатывает сигнал на запорно-регулирующие клапана (8а, 11а).В системе предусмотрен контроль засорения фильтра. Когда перепад давления до и после фильтра превысит 100Па датчик (4а) замкнет свои контакты и этот сигнал включит световую сигнализацию и если в течение 72 часов фильтр не почистит или не заменят, остановит систему.В системе предусмотрена защита калориферов от замерзания. Когда температура воды в обратном трубопроводе снижается ниже 20 °С, сигнал от датчика (5а) поступает в щит управления. Также предусмотрена защита по температуре воздуха после калорифер. Датчик (9а) выработает сигнал при температуре 5 °С который поступит в щит управления. При поступлении одного из сигналов происходит остановка вентилятора, закрывается сблокированный с ним клапан наружного воздуха и полностью открывается трехходовой клапан (8а) для максимального увеличения расхода теплоносителя. Таким образом, движение холодного воздуха прекращается, а циркуляция теплоносителя через калорифер продолжается. Вследствие отсутствия теплосъема, температура охлажденного теплоносителя начинает повышаться. При достижении температуры теплоносителя 50 °С вентилятор включается, клапан наружного воздуха открывается, и работа воздухонагревателя возобновляется.По датчику температуры наружного воздуха (1а) происходит переключение режимов работы зимний или летний. В зависимости от режима работы воздух либо нагревается или охлаждается. Для регулирования температуры приточного воздуха применяют узел управления подачей теплоносителя в воздухонагреватель. Схема узла управления УУ1 показана на рисунке 3. Рисунок 3 – Схема узла управления УУ1.1 – Накладной термостат защиты калорифера от замерзания по воде.2 – Циркуляционный насос.3 – Показывающий стрелочный манометр.4 – Показывающий стрелочный термометр.5 – Фильтр.6 – Накладной датчик температуры обратной воды.7 – Балансировочный клапан.8 – Отсечной шаровой кран.9 – Трехходовой клапан с электроприводом.Вода из теплосети проходит через балансировочный клапан и фильтр и поступает в теплообменник, отдает часть тепла и возвращается в теплосеть. Циркуляционный насос создает подмешивание воды приточной с обратной водой, которая поступает в приточный трубопровод в зависимости от положения регулирующего клапана. Регулирующий клапан увеличивает или уменьшает поступление обратной воды в теплообменник в зависимости от температуры приточного воздуха или температуры обратной воды, которую измеряет накладной датчик температуры. Накладной термостат обеспечивает защиту теплообменника от замерзания теплоносителя. Если температура воды будет ниже 0 °С, то произойдет замерзание теплоносителя и приводит к разрыву трубок теплообменника, который ремонту не подлежит, а замен дорогостоящий.В летнем режиме работы регулированием подачей холодоносителя применяется узел управления подачей холодоносителя в воздухоохладитель. Узел управления подачей холодоносителя в воздухоохладитель УУ2 показан на рисунке 4. Рисунок 4 – Подача хладоносителя в воздухоохладитель УУ2.2 – Циркуляционный насос.3 – Показывающий стрелочный манометр.4 – Показывающий стрелочный термометр.5 – Фильтр.7 – Балансировочный клапан.8 – Отсечной шаровой кран.9 – Трехходовой клапан с электроприводом.Вода из холодильной машины проходит через балансировочный клапан и фильтр и поступает в секцию охлаждения, нагревается и возвращается в теплосеть. Циркуляционный насос создает подмешивание воды приточной с обратной водой которая поступает в приточный трубопровод в зависимости от положения регулирующего клапана. Регулирующий клапан увеличивает или уменьшает поступление обратной воды в теплообменник в зависимости от температуры приточного воздуха.4. Разработка принципиальной электрической схемыНа принципиальной схеме изображаются все электрические элементы и устройства, необходимые для осуществления и контроля в изделии заданных электрических процессов, все электрические связи между ними, а также электрические элементы (соединители, зажимы и т.п.), которыми заканчиваются входные и выходные цепи, чертеж ДП АТ061 К897 Э3.Система имеет два режима работы зимний и летний. В зимний период работы системы воздух перед подачей в обслуживаемое помещение подогревается, а в зимний охлаждается. Тепло и хладоносителем в нашей системе является вода. Переключение происходит автоматически либо в ручную. Автоматический переход происходит по датчику температуры наружного воздуха с гистерезисом. Переход с зимнего на летний при температуре 12 °С, а с летнего на зимний при температуре 8 °С. В ручном режиме с помощью переключателей (SA1, SA2). Рассмотрим по отдельности эти режимы.4.1 Режим работы в зимний периодДежурный режимВ дежурном режиме воздушные клапаны закрыты, вентиляторы приточной и вытяжной установки выключены, на щите лампы «СЕТЬ» (HL1), «ЗИМНИЙ РЕЖИМ» (HL5), «ВОЗДУШНЫЙ КЛАПАН ЗАКРЫТ» (HL4) и «СТОП» (HL3) находятся во включенном состоянии. Циркуляционный насос в узле регулирования подачей теплоносителя работает, регулирование осуществляется по температуре Тобр., которая поддерживается равной Тобр.зад.Пуск системыПереход из дежурного режима в режим вентиляции возможен только после прогрева калорифера. Для запуска системы необходимо нажатькнопку «ПУСК» (SB1) расположенную на лицевой панели за дверцей щита. При этом лампа «СТОП» (HL3) выключится и включится лампа «ПУСК» (HL2) и система перейдет в режим прогрева. В режиме прогрева воздушные клапана закрыты, вентиляторы выключены. Регулирование осуществляется по температуре Тобр., которая доводится до значения Тпуск, после чего на клапан подается дополнительный «упреждающий» импульс на открытие, и после заданной задержки, система перейдет в режим вентиляции.Режим вентиляцииПри подаче напряжения на двигатель вентилятора одновременно подается сигнал на открытие воздушного клапана и в течение 10 секунд должен поступить сигнал об открытии клапана и выключится лампа «ВОЗДУШНЫЙ КЛАПАН ЗАКРЫТ».В режиме вентиляции регулирование осуществляется по температуре приточного воздуха Тпрв, которая поддерживается равной Тпрв.зад. При превышении температуры Тобр над заданным значением контроллер переключается на ее регулирование с целью недопущения перегрева воды, возвращаемой в тепловую сеть. Контроль превышения Тобр активизируется с задержкой после включения вентилятора.Аварийные режимыОпасность замерзания калорифера.При срабатывании контактных датчиков защиты по воде или по воздуху система переходит в дежурный режим и загорается лампа «ОПАСНОСТЬ ЗАМЕРЗАНИЯ». После пропадания сигнала система переходит в режим прогрева и заново запускается.Авария двигателяПри срабатывании контактного датчика воздушного потока или термостата перегрева двигателя в режиме вентиляции система переходит в дежурный режим и включается лампа «АВАРИЯ ДВИГАТЕЛЯ». Сброс сброса аварии осуществляется нажатием кнопки «СТОП».Засорение фильтраПри срабатывании контактного датчика воздушного потока загорается лампа «ФИЛЬТР ЗАСОРЕН». И если в течение 72 часов систему не остановят и не почистят фильтр, переведет систему в дежурный режим.Воздушный клапан не открылсяПосле подачи сигнала открытия на привод воздушного в течение 10 секунд сигнал о закрытии клапана поступает, то система переходит в дежурный режим, а лампа ВОЗДУШНЫЙ КЛАПАН ЗАКРЫТ» включается и выключается с интервалом 1 секунда.4.2 Режим работы в летний периодДежурный режимВ дежурном режиме воздушные клапаны закрыты, вентиляторы приточной и вытяжной установки выключены, на щите лампы «СЕТЬ» (HL1), «ВОЗДУШНЫЙ КЛАПАН ЗАКРЫТ» (HL4) и «СТОП» (HL3) находятся во включенном состоянии. Циркуляционный насос работает. Регулирование не осуществляется.Пуск системыДля запуска системы необходимо нажать кнопку «ПУСК» (SB1), расположенную на лицевой панели за дверцей щита. При этом лампа «СТОП» (HL3) выключится и включится лампа «ПУСК» (HL2) и система перейдет в режим вентиляции.Режим вентиляцииПри подаче напряжения на двигатель вентилятора одновременно подается сигнал на открытие воздушного клапана и в течение 10 секунд должен поступить сигнал об открытии клапана и выключится лампа «ВОЗДУШНЫЙ КЛАПАН ЗАКРЫТ» (HL4).В режиме вентиляции регулирование осуществляется по температуре приточного воздуха Тпрв, которая поддерживается равной Тпрв.зад.Аварийные режимыАвария двигателя.При срабатывании контактного датчика воздушного потока или термостата перегрева двигателя в режиме вентиляции система переходит в дежурный режим и включается лампа «АВАРИЯ ДВИГАТЕЛЯ» (HL8).Сброс сброса аварии осуществляется нажатием кнопки «СТОП» (SB2).Засорение фильтра.При срабатывании контактного датчика воздушного потока загорается лампа «ФИЛЬТР ЗАСОРЕН» (HL6). И если в течение 72 часов систему не остановят и не почистят фильтр, переведет систему в дежурный режим.Воздушный клапан не открылся.После подачи сигнала открытия на привод воздушного клапана в течение 10 секунд сигнал о закрытии клапана поступает, то система переходит в дежурный режим, а лампа «ВОЗДУШНЫЙ КЛАПАН ЗАКРЫТ» (HL4) включается и выключается с интервалом 1 секунда.При поступлении сигнала с пульта пожарной охраны система переключится в дежурный режим без автоматического перезапуска при пропадании сигнала.Значения уставок системы указаны в таблице №4.1.Таблица №4.1 – значение уставок системы Параметр Наименование Значение Тпрз Заданная температура приточного воздуха. 22 °С Тобр. зад. Заданная температура воды в обратномтрубопроводе. 45 °С Тобр.змр. Минимальная температура воды в обратном трубопроводе. 20 °С Тлетн. Температура наружного воздуха, прикотором система меняет режим работы. 10 °С 4.3 Разработка схемы внешних соединенийНа схеме соединений изображены все устройства и элементы, входящие в состав изделия, их входные и выходные элементы (соединители, платы, зажимы и т.п.), а также соединения между этими устройствами и элементами.На схеме показано соединение всех датчиков, исполнительных механизмов, двигателей, питающих кабелей к щиту управления, а также передача этих сигналов на микроконтроллер.Дискретные датчики и исполнительные механизмы подсоединяются к щиту контрольным кабелем КВВГ, а аналоговые датчики подключаются экранированным кабелем МКЭШ. При подключении к щиту управления экраны кабелей соединяются между собой на шине заземления.Щиты управления и агрегаты систем должны быть заземлены согласно требованиям ПУЭ.Все подключенные кабели и провода должны быть отмаркированны согласно проекту.5. Выбор средств автоматизацииВ данном проекте используется значительное количество различных датчиков, приводов, контроллеров и другого оборудования систем автоматики. Однако особое внимание уделяется свободно программируемому контроллеру LOGO фирмы «Siemens», т. к. он является основой всей системы автоматики. На остальные изделия будет дана лишь ознакомительная информация.5.1 Выбор главных элементов управленияКонтроллерОбщие данныеЛогические модули LOGO! являются компактными функционально законченными универсальными изделиями, предназначенными для построения простейших устройств автоматики с логической обработкой информации.Алгоритм функционирования модулей задается программой, составленной из набора встроенных функций. Программирование модулей LOGO! Basic может производиться с их клавиатуры без использования дополнительного программного обеспечения. Стоимостные показатели модулей настолько низки, что их применение может оказаться экономически целесообразным даже в случае замены устройств, включающих в свой состав 2 многофункциональных реле времени или 2 таймера и 3–4 промежуточных реле.LOGO! включает в себя:· устройство управления;· панель управления и индикации с фоновой подсветкой;· блок питания;· интерфейс для модулей расширения;· интерфейс для программного модуля (платы) и кабеля PC;· стандартные готовые функции, часто используемые на практике, например, функции задержки включения и выключения, импульсное реле и программный выключатель;· часовой выключатель;· цифровые и аналоговые флаги;· входы и выходы в соответствии с типом устройства.LOGO! предлагает решения различных технических задач, в том числе в электрооборудовании жилых помещений (например, освещение лестничных клеток, внешнее освещение, шторы, жалюзи, освещение витрин магазинов и т.д.), в коммутационных шкафах, в управлении машинами и аппаратами (например, системы управления воротами, вентиляционные системы или насосы для хозяйственной воды и многое другое).LOGO! можно использовать также для специальных систем управления в оранжереях и теплицах, для предварительной обработки сигналов управления и, при подключении коммуникационного модуля (напр., AS Interface), для децентрализованного управления машинами и процессами на месте.Все встроенные входы модулей могут использоваться для ввода дискретных сигналов. Напряжение питания входных цепей соответствует напряжению питания модуля. В некоторых моделях 2 из 8 входов имеют универсальное назначение. Они могут использоваться для ввода дискретных сигналов или аналоговых сигналов 0…10В.Модули LOGO! Contact предназначены для бесшумной коммутации трехфазных цепей переменного тока напряжением до 400В с активной нагрузкой до 20А или короткозамкнутыми асинхронными двигателями мощностью до 4кВт.Модули выпускаются в двух модификациях, отличающихся напряжением питания обмотки управления: =24В или 230В. Модули не подключаются к внутренней шине LOGO! Для управления их обмотками необходимо использовать соответствующие дискретных выходы модулей LOGO! или DM8/DM16.Блоки питания LOGO! Power преобразуют сетевые напряжения 115/230В в выходное напряжение =12В или =24В с различными значениями тока нагрузки. Модули обеспечивают защиту нагрузки от коротких замыканий.Для долговременного хранения резервной копии, защиты от несанкционированного доступа и копирования программы, а также переноса программ с одного логического модуля на другой может использоваться универсальный модуль памяти.Программирование модулей LOGO! Basic может выполняться с клавиатуры с отображением информации на встроенном дисплее. Процесс программирования сводится к последовательному соединению встроенных функциональных блоков и заданию параметров настройки (задержек включения / выключения, значений счетчиков и т.д.). Для выполнения всех этих операций используется система встроенных меню. Готовая программа может быть переписана в модуль памяти, вставленный в интерфейс модуля LOGO!Все встроенные функции хранятся в памяти логического модуля в виде двух библиотек. Библиотека GF содержит набор функций, выполняющих все основные логические операции. В библиотеку SF собраны специальные функции: триггеры, счетчики, таймеры, импульсные реле, компараторы, генераторы импульсов и т.д.Пакет LOGO! Soft Comfort позволяет производить разработку и отладку программ для LOGO! на компьютере, документировать программы и эмулировать работу разрабатываемого устройства. Поддерживается программирование в виде функциональных блоков и релейно-контактных схем. Пакет может работать под управлением операционных систем Windows 95/98/NT/ME/2000/XP, Linux, MAC OS-X.Готовая программа может загружаться в память логического модуля через кабель ПК или записываться в модуль памяти через специальное устройство LOGO! Prom.Максимальная надежность устройств и компонентов LOGO! достигается реализацией широкомасштабных и влияющих на величину издержек мероприятий при разработке и изготовлении.Сюда относятся:· использование высококачественных компонентов;· проектирование всех цепей в расчете на наихудшие условия;· систематическое автоматизированное тестирование всех компонентов;· тренировка всех схем высокой интеграции (напр., процессоров, памяти и т.д.);· меры по предотвращению статического разряда при работе с интегральными МОП-схемами;· визуальный контроль на различных этапах изготовления;· испытание на нагрев при длительной работе при повышенной температуре окружающей среды в течение нескольких дней;· тщательные окончательные приемочные испытания под управление компьютера;· статистический анализ всех возвращенных систем и компонентов для немедленного проведения корректирующих мероприятий;· контроль важнейших компонентов устройства управления с использованием онлайнового тестирования (циклическое прерывание для CPU и т.д.).Различные модели модулей оснащены транзисторными или релейными выходами. Транзисторные выходы способны коммутировать токи до 0.3А в цепях напряжением =24В и оснащены электронной защитой от короткого замыкания. Релейные выходы способны коммутировать токи до 10А (активная нагрузка) или до 3А (индуктивная нагрузка) в цепях напряжением =12/24В, 24В или

7.2 Особенности монтажа электропроводок объекта

Технический уход за низковольтной аппаратурой

Технический уход за внутренними электропроводками

8. Организационная часть

8.1 Техника безопасности при проведении технического обслуживания электрооборудования



Размер фонда оплаты труда разработчика АСУ рассчитываем по формуле:
ФОТ = ЗПпрям*(1+Кр/100), где
Кр – районный коэффициент, % (принимаем 15%)

ЗПпрям – прямая заработная плата, руб.;

Для этого найдем прямую заработную плату по формуле:
ЗПпрям = СР*Окл., где
СР – полный срок разработки системы автоматизации, дней;

Окл – оклад разработчика системы автоматизации, руб.;

Результаты занесем в таблицу №9.2.1.

Определение отчислений на социальные нужды (отчисления в пенсионный фонд РФ (20%), фонд социального страхования РФ (2,9%) и фонд обязательного медицинского страхования РФ (3,1%) по формуле:

Отч = ФОТ*От/100, где

От – общий размер отчислений, %

Отч = 34863,64*26/100 = 9064,54 руб.

Расчет накладных расходов, связанных с проектированием АСУ

Накладные расходы составляют 35% от начисленного ФОТ и рассчитываются по формуле:

Накл = ФОТ*0,35

Накл = 34863,64*0,35 = 12202,27 руб.

Определение предпроизводственных затрат по формуле:
Кпр = ФОТ + Отч + Накл
Кпр = 34863,64 + 9064,54 + 12202,27 = 56130,45 руб.
9.3 Расчет цеховых расходов
Таблица №9.3.1 - затраты на приобретение оборудования АСУ

Назначение

Единица измерения

Цена за ед. (руб.)

Кол-во

Сумма (руб.)

Автоматический выключатель 5SX23207

шт.

430

1

430

Автоматический выключатель 5SX21066

шт.

180

3

540

Автоматический выключатель 3RV10 11-DA1

шт.

640

2

1280

Контактор LOGO! Contact 24v 6EP1

шт.

480

4

1920

Блок питания LOGO! Power 24v/4A

шт.

4380

1

4380

Логический модуль LOGO! 24RC

шт.

5037

1

5037

Модуль ввода-вывода DM16

шт.

4397

1

4397

Модуль аналоговых сигналов AM2Pt100

шт.

4029.26

1

4029.26

Модуль аналоговых выходов АМ2 AQ

шт.

4135,78

1

4135,78

Переключатель 5ТЕ4705

шт.

47

2

94

Кнопка 5ТЕ4705

шт.

54

2

108

Лампа сигн. 5ТЕ5700

шт.

35,40

8

283,2

Клеммник 8WA1011

шт.

12

58

696

Бокс BGK1 052

шт.

1840,35

1

1840,35

Датчик QAC2010

шт.

287

3

861

Датчик QBM81.5

шт.

350

3

1050

Термостат RAK-TW.5000

шт.

1480

4

5920

Привод GMA126.1E

шт.

1570

2

3140

Насос UPS 25–20

шт.

2150

2

4300

Клапан VXP45.20–4

шт.

875

2

1750

Кабель КВВГ5x2.5

м.

43

25

1075

Кабель КВВГ5x1.5

м.

39,50

150

5925

Кабель КВВГ5x0.75

м.

35

200

7000

Итого:

60191,59



Расходы по материальному обеспечению приведены в таблице №9.3.1. и составили:

Смат= 60191,59 = 60191,59 руб.

Транспортно-заготовительные расходы составляют 15% от стоимости оборудования:

Стз= 0,15*61356,59 = 9203,49 руб.

Основная заработная плата производственных рабочих находится по формуле:
Роп = С*t, где
С – часовая тарифная ставка, соответствующая разряду выполняемой работы, руб.

t – время на выполнение операции, час.

Результаты расчетов заносим в таблицу №9.3.2
Таблица №9.3.2 – сводная ведомость определения расценки на создание АСУ

Операция

Кол. чел.

Раз.

Часовая тарифная ставка, руб.

Время на операцию, час

Сдельная расценка, руб.

Монтаж электрооборудования: электромонтажники

2

3

19,2

24

460,8

2

4

21,1

16

337,6

Итого:

4










798,4

Расчет фонда премии ЗПпрем. (60% от ЗПпрям.)

ЗПпрем. = 798,4*0,6 = 479,04 руб.

Расчет фонда доплат ЗПдп. (8,3% от ЗПпрям.)

ЗПдп. = 798,4*0,083 = 66,27 руб.

Расчет фонда ЗП рабочих занятых монтажом оборудования находится по формуле:
ЗПосн. = (ЗПпрям.+ ЗПпрем. + ЗПдп.)*Кр, где
Кр – районный коэффициент – 1,15

ЗПосн. = (798,4 + 479,04 + 66,27)*1,15 = 1343,70 руб.

Дополнительную заработную плату электромонтажников находим по формуле:
ЗПдоп. = ЗПосн.*n\100, где
n – принятый на предприятии процент дополнительной ЗП. Принимаем 15%

ЗПдоп. = 1343,70*15\100 = 201,55 руб.

Размер отчислений в социальные фонды рассчитаем по формуле:
Отч = (ЗПосн. + ЗПдоп.)*Со\100, где
Со – размер отчислений, %

Отч = (1343,70 +201,55)*26\100 = 401,76 руб.

Определение общепроизводственных расходов по формуле:
ОпрР = ЗПосн.*Н\100, где
Н – принятый на предприятии процент общепроизводственных расходов. Принимаем 112%.

ОпрР = 1343,7*112\100 = 1504,94 руб.

Определение общехозяйственных расходов по формуле:
ОхозР = ЗПосн.*Y\100, где
Y – принятый на предприятии процент общепроизводственных расходов. Принимаем 85%.

ОхозР = 1343,7*85\100 = 1142,14 руб.

    1. 1   2   3   4   5   6


Расчет себестоимости объекта автоматизации


Определение оптовой цены Цопт по формуле:
Цопт = ΔК + П, где
ΔК – себестоимость изделия;

П – прибыль на единицу изделия;

Себестоимость изделия:

ΔК= 56130,45+60191,59+9203,49+1343,70+201,55+

+1504,94+1142,14=129717,86 руб.

Определим величину прибыли по формуле:
П=Рпр*Ссс\100, где
Рпр – рентабельность продукции, принимаем 30%.

П = 30*129717,86\100 = 38915,36 руб.

Цопт = 129717,86 + 38915,36 = 168633,22 руб.

Определение отпускной цены по формуле:

Цотп = Цопт +НДС, где

НДС = Сндс*Цопт\100, где
Сндс – ставка НДС, принимаем 18%.

НДС = 18*168633,22\100 = 30353,98 руб.

Цотп = 168633,22 + 30353,98 = 198987,20 руб.


    1. Подсчет экономии за счет внедрения системы автоматизации


Экономия затрат в результате экономии электроэнергии: (ΔSпр)
ΔSэл = ΔЭэл*Сэл, где
ΔЭэл – экономия электроэнергии, кВт (500 кВт)

Сэл – стоимость 1 кВт*ч. электроэнергии (1,58 руб. – Постановление Государственного комитета Республики Башкортостан по тарифам от 30 декабря 2008 года №623 «Об установлении тарифов на электрическую энергию, поставляемую гарантирующим поставщиком на розничном рынке Республики Башкортостан в 2009 году)

ΔSэл = 500*1,58 = 770 руб.

Экономия по фонду заработной платы ремонтников вследствие сокращения времени на ремонты (ΔSзпр).
ΔSзпр=Сч*ΔТ*К1*Кр*Котч., где
Сч – часовая тарифная ставка рабочего;

ΔТ – снижение времени простоев по причине ремонта, 150 часов –

экономия времени на ремонт за счет автоматизации управления;

К1 – коэффициент, учитывающий премии и доплаты; принимаем 1,683

Кр – районный коэффициент;

Котч. – коэффициент учитывающий отчисления на социальные нужды

принимаем 1,26;

ΔSзпр = 21,1*150*1,683*1,15*1,26 = 7718,38

Экономия расходов на ЗП и отчислений на социальные нужды в результате увеличения нормы обслуживания и условного высвобождения рабочих
(ΔSзп)

ΔSзп = Сч*Др*ΔЧ*К1*Кр*Котч, где
ΔЧ – высвобождение рабочих, чел. (высвобождается 2 человека);

Др – годовой фонд рабочего времени рабочего, час (1960 час);

ΔSзп = 21,1*1960*2*1,683*1,15*1,26 = 201707,04

Определим экономию полученную в процессе внедрения АСУ по формуле:
ΔS = ΔSэл + ΔSзпр + ΔSзп
ΔS = 770 + 7718,38 + 201707,04 = 210195,42 руб.


Определение годового экономического эффекта, полученного от внедрения АСУ в производство определим по формуле:
Эг = ΔS – Ен*(ΔК + Кпр),
где Ен – нормативный коэффициент сравнительной эффективности капитальных вложений, принимаем 0,2.

Эг = 210195,42 – 0,2*(129717,86 + 56130,45) = 173025,76 руб.

Срок окупаемости капитальных вложений определим по формуле:
Тр = ΔК\ ΔS
Тр = 129717,86\ 210195,42 = 0,61 года
9.6 Анализ экономической эффективности разработки
Применение систем автоматизации для вентиляции и кондиционирования воздуха необходимо так, как её использование приводит к экономии энергоресурсов, защите двигателей от перегрева, защита теплообменника от замораживания. Расчеты, произведенные в экономической части дипломного проекта показывают, что в результате внедрения системы автоматизации годовой экономический эффект является положительным и составляет 173025,76 рублей.

По сравнению с аналогичными разработками проектируемая система имеет большую надёжность за счёт применения микроконтроллера фирмы Siemens LOGO!. Микроконтроллер LOGO! имеет возможность расширения количество входов и выходов, что позволяет при расширении процесса автоматизации не заменять оборудование, а перепрограммировать контроллер.

Это дает основание для вывода о том, что внедрение предлагаемой САУ с экономической точки зрения целесообразно. Окупаемость капитальных вложений составляет 0,61 года, что тоже соответствует условиям целесообразности внедрения.

Заключение
Разрабатываемая система автоматического управления приточно-вытяжной вентиляционной установкой подобна уже разработанным устройствам, основное отличие в том, что система была разработана на новом свободно программируемом контроллере пятого поколения LOGO!…0BA5 фирмы Siemens.

Можно отметить основные принципиальные отличия разрабатываемой системы от традиционно используемых на большинстве российских предприятий:

· Применение свободно программируемого контролера позволяет осуществить управление вентиляционной установкой в автоматическом режиме, отсюда следует, что заданные параметры, например поддержание установленной температуры в здании, будут поддерживаться значительно точнее, чем при ручном управлении;


· Применение свободно программируемого контролера позволяет в любой момент подключить новые системы, добавив, модули расширения или изменить работу системы по требованию заказчика;

· Использование в системе контроллера LOGO! позволяет вводить аналогичные системы, объединение их в единую систему и ввести диспетчеризацию по шине EIB;

· Применение автоматического управления позволяет не держать в штате предприятия лиц ответственных за поддержание комфортных условий для работников. Следовательно, уменьшаются эксплуатационные расходы и производственный риск, связанный с человеческим фактором;

· На комплектующие изделия вновь создаваемого устройства предприятие изготовитель SIEMENS даёт значительно больший гарантийный срок.

Применение данной системы экономически эффективно из-за невысокой стоимости комплекта автоматики (по сравнению с существующими предложениями), а также обеспечивается защита дорогостоящего оборудования. Это обеспечивает экономию на ремонт или замену оборудования.

Система обеспечивает защиту технического персонала от поражения электрическим током.

В дипломном проекте рассмотрены все вопросы, обозначенные в задании на дипломное проектирование, техническом задании и требований ГОСТ на разработку АСУ.

Были Разработаны:

· функциональная схема;

· схема электрическая принципиальная;

· коммутационная программа контроллера;

· схема внешних соединений;

· схема расположения оборудования в венткамере;

· схема компоновки щита управления.

Выбраны датчики, исполнительные механизмы, регулирующие клапана и устройства защиты.
Список литературы
1. Густав Олссон, Джангуидо Пиани «Цифровые системы автоматизации и управления. Издание третье, переработанное и дополненное». Санкт Петербург, Невский диалект, 2001

2. Кокорин О.Я. «Современные системы кондиционирования воздуха». – М.: Физматлит. 2003

3. Королев Г.В. «Электронные устройства автоматики. Издание второе, переработанное и дополненное». – М: Высшая школа, 1991

4. Под редакцией Богословского В.Н. «Отопление и вентиляция».-М: Стройиздат, 1976

5. Молчанов Б.С. «Проектирование промышленной вентиляции». – Ленинград, Стройиздат, 1970

6. Кузьмин М.С., Овчинников П.А. «Вытяжные и воздухораспределительные устройства». – М.:Стройиздат. 1987