Файл: Author24. pro и не парься мы всё сделаем за тебя.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 03.12.2023

Просмотров: 43

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Б ИНГО! Ты только что нашел решение своей проблемы! Только давай договоримся – ты прочтёшь текст до конца, окей? :)

Давай начистоту: тут один шлак, лучше закажи работу на author-24.pro и не парься – мы всё сделаем за тебя! Даже если остался один день до сдачи работы – мы справимся, и ты получишь «Отлично» по своему предмету! Только представь: ты занимаешься своим любимым делом, пока твои одногруппники теряют свои нервные клетки…

Проникнись… Это бесценное ощущение :)

Курсовая, диплом, реферат, статья, эссе, чертежи, задачи по матану, контрольная или творческая работа – всё это ты можешь передать нам, наслаждаться своей молодостью, гулять с друзьями и радовать родителей отличными оценками. А если преподу что-то не понравится, то мы бесплатно переделаем так, что он пустит слезу от счастья и поставит твою работу в рамочку как образец качества.

Ещё сомневаешься? Мы готовы подарить тебе сотни часов свободного времени за смешную цену – что тут думать-то?! Жизнь одна – не трать её на всякую фигню!

Перейди на наш сайт author-24.pro - обещаю, тебе понравится! :)

А работа, которую ты искал, находится ниже :)

ОГЛАВЛЕНИЕ





ВВЕДЕНИЕ……………………………………………………………

3

1.

ПОНЯТИЕ О ЛОГИЧЕСКОМ ЗАКОНЕ…………………………….

4

2.

ФОРМУЛИРОВКА ЛОГИЧЕСКИХ ЗАКОНОВ……………………

6

3.

ЗАКЛЮЧЕНИЕ………………………………………………………..

10

4.

СПИСОК ЛИТЕРАТУРЫ……………………………………………..

11


ВЕДЕНИЕ
Слово «логика» употребляется нами довольно часто, но в разных значениях. Нередко говорят о логике событий, логике характера и т.д. В этих случаях имеется в виду определенная последовательность и взаимозависимость событий или поступков. «Быть может, он безумец, — говорит один из героев рассказа английского писателя Г.К.Честертона, — но в его безумии есть логика. Почти всегда в безумии есть логика. Именно это и сводит человека с ума». Здесь «логика» как раз означает наличие в мыслях определенной общей линии, от которой человек не в силах отойти.


Слово «логика» употребляется также в связи с процессами мышления. Так, мы говорим о логичном и нелогичном мышлении, имея в виду его определенность, последовательность, доказательность и т.п.

Кроме того, логика — особая наука о мышлении. Она возникла еще в IV в. до н.э., основателем ее считается древнегреческий философ Аристотель. Позднее она стала называться формальной логикой.

В логике, как и во всякой науке, главное — законы. Логических законов бесконечно много, и в этом ее отличие от большинства других наук. Однородные законы объединяются в логические системы, которые тоже обычно именуются логиками.

Без логического закона нельзя понять, что такое логическое следование и что такое доказательство. Правильное, или, как обычно говорят, логичное, мышление — это мышление по законам логики, по тем абстрактным схемам, которые фиксируются ими. Законы логики составляют тот невидимый каркас, на котором держится последовательное рассуждение и без которого оно превращается в хаотическую, бессвязную речь.

ПОНЯТИЕ О ЛОГИЧЕСКОМ ЗАКОНЕ
Прежде чем рассмотреть содержание и специфику законов логики целесообразно определить родовое понятие "закон".

Закон есть существенная, внутренняя, устойчивая, необходимая, повторяющаяся связь явлений, обусловливающая их структуру, функционирование или развитие.

На основе этой общей дефиниции определим категорию "закон мышления".

Закон мышления - это внутренняя, существенная, устойчивая, необходимая, повторяющаяся связь между элементами мысли и самими мыслями. Источники этих связей - объективны. Законы мышления являются обобщенным отражением закономерностей внешнего мира, преобразованных в человеческой голове и ставших общими принципами познающего мышления. Отсюда, порядок и связь вещей определяет порядок и связь мыслей. Этот процесс идет по двум направлениям:

  • содержательному (отражение связей реальных вещей);

  • формальному (отражение связей форм мысли).

Первое направление реализуется в диалектических законах и изучается диалектической логикой, а второе - в формально-логических законах и изучается формальной логикой.

В логических законах выражены существенные, устойчивые и необходимые черты внутренней структуры мыслительного процесса, которая исторически сложилась на основе объективных свойств и отношений природного мира. Вот почему сами законы логики носят объективный характер. Поэтому люди не могут по своему усмотрению изменять или "диктовать" новые логические законы. Законы логики воспринимаются как аксиома - истина, не требующая доказательства. Обладая характером всеобщности в сфере мышления, эти законы являются обязательными с точки зрения их соблюдения во всех областях научного знания и на любом уровне познавательного процесса. Естественно, что одних логических законов недостаточно, чтобы обеспечить истинность наших суждений, умозаключений. Законы логики составляют важный и обязательный момент в системе условий, определяющих истинность наших мыслей. Логическая правильность и стройность мышления необходимы, но недостаточны для объективной истинности выводного знания. Отсюда вытекает следующее положение: законы формальной логики нельзя абсолютизировать, они не распространяются на внешний мир; их применение ограничено сферой мышления, а их действие

правомерно лишь в пределах логической формы, а не содержания мысли.

Необходимо обратить внимание на то, что хотя логические законы релятивны, они не выступают в качестве простой условности или произвольного измышления разума. Такие законы - результат отражения внешнего мира в сознании человека. Только адекватно и научно осмысленная формальная логика раскрывает объективную основу логической формы законов человеческого мышления и тем самым доказывает их необходимость во всяком процессе научного познания объективной реальности.

Различают следующие виды формально-логических законов.

Во-первых, законы, связаны с отдельными формами абстрактного мышления или с понятием, или с суждением, или с умозаключением.

Во-вторых, законы, которые имеют всеобщий характер, действуют во всех формах абстрактного мышления. Их называют основные формально-логические законы. Это - закон тождества, закон противоречия, закон исключенного третьего и закон достаточного основания. Их называют основными потому, что они:

  • действуют во всяком мышлении;

  • лежат в основе различных логических операций с понятиями и суждениями;

  • используются в процессе умозаключений и доказательств;

  • отражают важные свойства правильного мышления: определенность, логическую непротиворечивость, последовательность, обоснованность.

Первые три закона были выявлены и сформулированы древнегреческим философом Аристотелем, закон достаточного основания - немецким философом XVIII в. Г.В. Лейбницем.

Необходимо иметь в виду, что выделение четырех формально-логических законов осуществляется только в традиционной логике, которая и является объектом нашего изучения. Логика же современная (в частности, математическая, символическая) показала, что логических законов бесконечно много и нет оснований делить их на основные и второстепенные.

Кроме того, построены логические системы, в которых не являются законами, например, закон исключенного третьего (например, интуиционистская логика, некоторые системы многозначной логики), закон противоречия (паранепротиворечивая логика). Однако, абстрагируясь от этого и оставаясь в рамках традиционной логики, обратимся к анализу выделенных формально-логических законов и еще нескольких законов (например закон контрапозиции).

ФОРМУЛИРОВКА ЛОГИЧЕСКИХ ЗАКОНОВ
Закон противоречия.

Из бесконечного множества логических законов самым популярным является закон противоречия. Он был открыт одним из первых и сразу же объявлен наиболее важным принципом не только человеческого мышления, но и самого бытия.

И вместе с тем в истории логики не было периода, когда этот закон не оспаривался бы и когда дискуссии вокруг него совершенно затихали бы.

Закон противоречия говорит о противоречащих друг другу высказываниях, т. е. о таких высказываниях, одно из которых является отрицанием другого. К ним относятся, например, высказывания «Луна — спутник Земли» и «Луна не является спутником Земли», «Трава — зеленая» и «Неверно, что трава зеленая» и т.п. В одном из противоречащих высказываний что-то утверждается, в другом — это же самое отрицается.

Если обозначить буквой А произвольное высказывание, то выражение не-А, будет отрицанием этого высказывания.

Идея, выражаемая законом противоречия, кажется простой и даже банальной: высказывание и его отрицание не могут быть вместе истинными.

Используя вместо высказываний буквы, эту идею можно передать так: неверно, что А и не-А. Неверно, например, что трава зеленая и не зеленая, что Луна спутник Земли и не спутник Земли и т.д.

Закон противоречия говорит о противоречащих высказываниях — отсюда его название. Но он отрицает противоречие, объявляет его ошибкой и тем самым требует непротиворечивости — отсюда другое распространенное имя — закон непротиворечия.

Закон исключенного третьего.

Закон исключительного третьего, как и закон противоречия, устанавливает связь между противоречащими друг другу высказываниями. И опять-таки идея, выражаемая им, представляется поначалу простой и очевидной: из двух противоречащих высказываний одно является истинным.

В использовавшейся уже полусимволической форме: А или не-А, т.е. истинно высказывание А или истинно его отрицание, высказывание не-А.

Конкретными приложениями этого закона являются, к примеру, высказывания: «Аристотель умер в 322 г. до н.э. или он не умер в этом году», «Личинки мух имеют голову или не имеют ее».

Истинность отрицания равнозначна ложности утверждения. В силу этого закон исключенного третьего можно передать и так: каждое высказывание является истинным или ложным.

Само название закона выражает его смысл: дело обстоит так, как описывается в рассматриваемом высказывании, иди так, как говорит его отрицание, и никакой третьей возможности нет.


Закон тождества.

Самый простой из всех логических законов — это, пожалуй, закон тождества. Он говорит: если утверждение истинно, то оно истинно, «если А, то А». Например, если Земля вращается, то она вращается и т.п. Чистое утверждение тождества кажется настолько бессодержательным, что редко кем употребляется.

Древнекитайский философ Конфуций поучал своего ученика: «То, что знаешь, считай, что знаешь, то, что не знаешь, считай, что не знаешь». Здесь не просто повторение одного и того же: знать что-либо и знать, что это знаешь, не одно и то же.

Закон тождества кажется в высшей степени простым и очевидным. Однако и его ухитрялись истолковывать неправильно. Заявлялось, например, будто этот закон утверждает, что вещи всегда остаются неизменными, тождественными самим себе. Это, конечно, недоразумение. Закон ничего не говорит об изменчивости или неизменности. Он утверждает только, что если вещь меняется, то она меняется, а если она остается одной и той же, то она остается той же.

Закон достаточного основания.

Сущность закона: всякая мысль может быть признана истинной только тогда, когда она имеет достаточное основание, всякая мысль должна быть обоснована. Записывается: А есть потому, что есть В.

Закон контрапозиции.

«Закон контрапозиции» — это общее название для ряда логических законов, позволяющих с помощью отрицания менять местами основание и следствие условного высказывания.

Один из этих законов, называемый иногда законом простой контрапозиции, звучит так:

если первое влечет второе, то отрицание второго влечет отрицание первого.

Например: «Если верно, что число, делящееся на шесть, делится на три, то верно, что число, не делящееся на три, не делится на шесть».

Другой закон контрапозиции говорит:

если верно, что если не-первое, то не-второе, то верно, что если второе, то первое.

Например: «Если верно, что рукопись, не получившая положительного отзыва, не публикуется, то верно, что публикуемая рукопись имеет положительный отзыв». Или другой пример: «Если нет дыма, когда нет огня, то если есть огонь, есть и дым».

Еще два закона конрапозиции:

если дело обстоит так, что если А, то не-В, то если В, то не-А; например: «Если квадрат не является треугольником, то треугольник не квадрат»;

если верно, что если не-А, то В, то если не-В, то А; например: «Если не