Файл: Тема искусственный интеллект, машинное.pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 04.12.2023

Просмотров: 64

Скачиваний: 4

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

7 по себе они опять являются одним из эвристических методов оптимизации для поиска оптимального решения (или как минимум субоптимального). Они работают с данными, которые могут быть представлены в виде «хромосом» — последовательностей генов, то есть списков каких- либо значений, к которым можно применить генетические операции. Здесь главное — чтобы на генах были определены эти самые генетические операции, которые возвращали бы приемлемый результат, имеющий смысл.
Идём дальше и кратко коснёмся квазибиологического подхода и его методов. Фактически, это отдельное направление исследований в искусственном интеллекте, так как оно основано не на цифровом моделировании in silico разных аспектов интеллекта, а на применении биомолекулярных механизмов для того же самого. Этот подход ещё называется
«биокомпьютингом», и это очень перспективное направление. В рамках квазибиологического подхода разработано большое количестве методов — начиная от биомолекулярной электроники, молекулярных вычислений и заканчивая нейрокомпьютингом. В последнем направлении важной вехой является разработка нейроморфных чипов. И, в общем-то, иногда мне кажется, что прорыв в области искусственного интеллекта будет лежать на пересечении трёх областей — техники, информатики и химии. Но посмотрим…
В основе этого подхода лежит понимание, что феномены человеческого поведения, наша способность к обучению и адаптации, есть следствие именно биологической структуры и особенностей её функционирования. Хотя, скорее всего, это очень слабая гипотеза. Вычисления в рамках квазибиологического подхода организуются при помощи живых тканей, клеток, вирусов и различных биомолекул. Часто используются молекулы дезоксирибонуклеиновой кислоты, на основе которой создают ДНК-компьютер. Кроме ДНК, в качестве биопроцессора могут использоваться также белковые молекулы и биологические мембраны.
Обычно для решения определённой задачи создаётся так называемая «индивидуальная машина», которая в отличие от универсальной машины Тьюринга, направлена на решение конкретной задачи, причём обычно делает это более эффективным способом, поскольку индивидуальная машина специально сконструирована для решения именно этой задачи. Машина Тьюринга, лежащая в основе стандартной вычислительной модели, выполняет свои команды последовательно, а в рамках квазибиологической парадигмы часто рассматривается массовый параллелизм. Ну вот если, к примеру, рассмотреть ДНК-компьютер, то в нём все молекулы ДНК одновременно участвуют во взаимодействиях, параллельно проводя вычисления.
Два самых главных направления в рамках квазибиологического подхода — это молекулярные вычисления и биомолекулярная электроника. Можно ещё упомянуть нейрокомпьютинг и создание нейроморфных чипов, но он чаще всего рассматривается как часть структурного подхода и искусственных нейронных сетей.
Молекулярные вычисления — это отдельная вычислительная модель, в которой решение задачи осуществляется при помощи проведения сложных биохимических или нанотехнологических реакций. Молекулярные компьютеры — это молекулы, запрограммированные на нужные свойства и поведение, которые, участвуя в химических реакциях, как бы «выращивают» результат.
Что интересно, идею биокомпьютинга подсказал выдающийся математик Джон фон Нейман в своей книге «Теория самовоспроизводящихся автоматов», которую, кстати, как обычно очень рекомендую для внимательного чтения. В этой книге описан проект клеточных автоматов, которые могут самовоспроизводиться, как и живая клетка.
Почти в каждой живой клетке нашего организма есть длинная молекула ДНК, которая кодирует генетическую информацию. При помощи различных ферментов цепочки ДНК могут быть разрезаны, склеены, в них могут добавляться буквы генетического кода или удаляться из них.


8
Всё это — базовые операции работы с информацией, которые могут быть использованы для производства вычислений. Более того, цепочки ДНК могут воспроизводиться и клонироваться.
Это позволяет запустить массовый параллелизм поиска решения. В небольшой пробирке после проведения должным образом сконструированной биохимической реакции будет получен результат, который считывается специальной аппаратурой.
Интерес вызывает то, что для некоторых задач молекулярные компьютеры очень быстро и точно находят приемлемые решения, в то время как традиционные компьютеры затрудняются это сделать. Например, решение задача коммивояжёра, то есть поиска кратчайшего пути обхода графа, при помощи реакций с ДНК осуществляется практически мгновенно, в то время как для обычного компьютера требуется огромное количество времени. Правда, тут есть одна тонкость, которая мешает работе обычному компьютеру — это комбинаторный взрыв. И если в традиционной архитектуре он ведёт к увеличению времени решения, то для ДНК-компьютера требуется подготовка огромного количества вариантов нуклеотидных нитей. Соответственно, объём пробирки растёт так же, как и количество вариантов в комбинаторном взрыве.
В общем, часто биокомпьютинг можно охарактеризовать как новую парадигму вычислений, которая в отличие от традиционной вычислительной модели работает быстро, но при решении сложных задач с комбинаторным взрывом растёт не время вычислений, а необходимый для них объём биокомпьютера.
Вместе с тем в последнее время всё активнее разрабатывается агентный подход к построению искусственного интеллекта. В рамках этого подхода изменена точка зрения на цель построения интеллектуальной системы, и считается, что построить нужно систему не с разумным поведением, а с рациональным. С одной стороны, это серьёзно облегчает задачу, поскольку, в отличие от понятий «разум» или «интеллект», понятия «рациональность» и «рациональное поведение» можно строго формализовать (например, рациональное поведение — это выбор и достижение оптимальной цели с минимизацией затраченных на это ресурсов). С другой стороны, для демонстрации рационального поведения агент должен обладать достаточной «разумностью», чтобы определить цель, составить стратегию её достижения и выполнить её.
Каждый агент — это полноценная кибернетическая машина, которая имеет систему управления, непрерывно получающую информацию с сенсорных систем агента и воздействующую на окружающую среду при помощи исполнительных устройств (или актуаторов). При этом подход не определяет сущность сенсорных систем и актуаторов — их природа может быть произвольной.
Поэтому агентный подход одинаково применим как к чисто программным сущностям, работающим в некоторой искусственной среде, так и к программно-аппаратным комплексам, равно как и вообще к биологическим системам.
Агентный подход интересен тем, что в его рамках можно использовать эволюционные алгоритмы, которые подбирают интеллектуальных агентов исходя из степени их приспособленности к достижению цели. Во время взаимодействия агентов осуществляется отбор наиболее успешных, которые затем используются для генерации нового поколения агентов, среди которых опять применяются те же самые процедуры оценки и отбора. В итоге наиболее успешное поколение решает задачи и достигает целей наиболее эффективным образом. Это идеальный вариант, который сегодня сложно достижим, но стремиться к нему интересно.
Также агентный подход лежит в основе так называемых многоагентных систем, в рамках которых осуществляется общее целеполагание, после чего каждому индивидуальному агенту даётся свобода действий в определённых рамках, в которых он имеет возможности и альтернативы по разработке и реализации различных стратегий достижения своей частной цели. В процессе этого агенты взаимодействуют друг с другом и со средой, обмениваясь информацией и выполняя


9 запросы других агентов. Кроме того, вполне может быть использована идея так называемого
«роевого интеллекта», когда каждая отдельная «особь» (то есть агент) интеллектом не обладает, но в целом «рой» (множество агентов, многоагентная система) обладает определёнными интеллектуальными способностями. Надо отметить, что всё перечисленное является одним из наиболее перспективных направлений исследований по искусственному интеллекту.
На этом я спешу закончить. Мы рассмотрели семь подходов в рамках трёх парадигм искусственного интеллекта, а дальше очень плотно изучим машинное обучение как наиболее широко используемую сегодня концепцию в рамках искусственного интеллекта. С вами был Роман Душкин.
До новых встреч и пока.