Файл: 1. Основные понятия и определения процессов пылеулавливания.doc
Добавлен: 04.12.2023
Просмотров: 56
Скачиваний: 2
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Электрофильтры серии ЭГА предназначены для обеспыливания неагрессивных невзрывоопасных газовых выбросов с температурой до 330°С. Корпуса аппаратов стальные, имеют прямоугольную форму. Корпус аппарата стальной теплоизолированный, имеет прямоугольную форму и рассчитан на разрежение до 4 кПа: в аппарате имеется 3 электрических поля, расположенных последовательно по ходу газа. Осадительные электроды представляют собой плоские полотна, набранные из прутков, а коронирующие - проволочные (диаметр проволоки 2,2 мм), натянутые при помощи грузов между осадительными. Длина одного активного поля 2,5 м, ширина 5,97 м (ширина корпуса 6,0 м), высота 7,74 м, расстояние между соседними осадительными электродами 260 мм. Уловленная пыль удаляется с электродов механическим встряхиванием посредством ударов молотков по наковальням осадительных и рамам подвеса коронирующих электродов. Аппараты ОГП изготовлялись четырехпольными с активной высотой 4,5 м, длиной 1,5 м, шириной поля 2,17 (ОГП-4-8) и 3,98 м (ОГП-4-16), а ширина корпуса составляла 2,20 и 4,0 м. Допустимое разрежение в аппарате 1,5 кПа.
Электрофильтры серии ЭГТ предназначены для очистки неагрессивных, невзрывоопасных газов с температурой до 450°С.
Их основное отличие от аппаратов предыдущих серий заключается в конструкции осадительных электродов, которые аналогичны применяемым в электрофильтрах серии ЭГА. Высота коронирующих электродов 8040 мм. Корпус аппарата рассчитан на разрежение до 4 кПа. Маркировка электрофильтров серии ЭГТ означает: электрофильтр горизонтальный высокотемпературный; первое число после букв указывает номер (габарит) типоразмерного ряда; второе - количество полей, третье - длину одного поля, м; четвертое - площадь активного сечения, м2.
Электрофильтры марки ЭГ2-2-4-37 СРК предназначены для очистки газов содорегенерационных котлоагрегатов. Электрофильтры односекционные, с двумя последовательными по ходу газа электрическими полями. Коронирующие электроды представляют собой трубчатые рамы, в которых закреплены коронирующие элементы; осадительные электроды выполнены в виде плоских полотен, набранных из пластинчатых элементов специального профиля. Расстояние между соседними осадительными электродами 300 мм, высота электродов 7200 мм, ширина поля 6000 мм.
Маркировка электрофильтра означает: электрофильтр горизонтальный
; первое число обозначает номер типоразмера (габарит) осадительного электрода, второе - количество полей, третье - активную длину поля, м; четвертое - площадь активного сечения, м2. Гидравлическое сопротивление фильтра 200 Па, разрежение в электрофильтре 3000 Па, пропускная способность по газу при скорости 1 м/с - 37 м3/с, температура очищаемых газов 130...250°С, ориентировачная степень очистки газов содорегенерационных котлоагрегатов 98%.
Электрофильтры типа УГМ используются для обеспыливания неагрессивных и невзрывоопасных технологических газовых выбросов с температурой до 250°С. Аппараты односекционные, с двумя электрическими полями по ходу газов. Корпуса электрофильтров прямоугольные, теплоизолированные, рассчитаны на разрежение до 4 кПа. Осадительные электроды представляют собой плоские полотна, набранные из пластинчатых элементов специального профиля. Расстояние между соседними осадительными электродами 275 мм. Коронирующие электроды составлены из ленточно-игольчатых элементов, натянутых в трубчатых рамах. Высота электродов 3000 мм, ширина корпуса 1500 мм (УГМ-2-3,5) и 3000 мм (УГМ-2-7). Пыль с электродов удаляется механическим встряхиванием. Маркировка электрофильтров обозначает: унифицированный горизонтальный малогабаритный; первое число - количество полей, второе - площадь активного сечения, м2.
Электрофильтры ЭГ-КЭН предназначены для обеспыливания газов, содержащих высокоомные дисперсные частицы с УЭС в пределах 108-1010 Ом м. Степень очистки газов в них может достигать 99,75%. Электрофильтры изготавливаются двух типоразмеров с маркировкой ЭГ-2-3-3,8-17-0,4 КЭН и ЭГ-2-4-2,5-77-05 КЭН, которая означает: электрофильтр горизонтальный; первое число после букв обозначает типоразмерный (габаритный) номер, второе -количество полей, третье - активную длину поля, м, четвертое - площадь активного сечения, м2, пятое - модификацию; аббревиатура "КЭН" означает "комбинированные электроды НИИОГаз". Аппараты имеют высоту электродов 6000 и 7150 мм, ширину 3200 и 11810 мм, производительность при скорости газов в 1 м/ с - 16,7 и 77,8 м3/с, допустимые пределы температур 330 и 250°С соответственно. Гидравлическое сопротивление электрофильтров составляет 200 Па, максимально допустимое разрежение - 5 кПа. Расстояние между соседними осадительными электродами 300 мм. Коронирующие электроды набираются из профилированных лент и создают электрическое поле со сложным характером изменения напряженности. Уловленная пыль удаляется механическим встряхиванием электродов.
Вертикальные сухие электрофильтры типа УВ могут применяться для обеспыливания неагрессивных и невзрывоопасных технологических газовых выбросов с температурой до 250°С. Электрофильтры однопольные, используются при низкой запыленности (до 30 г/м3), в пределах оптимальных значений удельного сопротивления пыли. В частности, они находят применение при очистке аспирационного воздуха электролизных цехов алюминиевых заводов.
Электрофильтры могут быть одно-, двух- или трех-секционными. Корпуса прямоугольные, теплоизолированные. Секции аппаратов разделены сплошными перегородками. Ширина секции аппаратов УВ 224 и УВ 324 составляет 6,1 м, остальных - 4,25 м. Движение газов в каждой секции организовано снизу-вверх. Разрежение в аппарате до 3,5 кПа. Осадительные электроды выполнены в виде пластинчатых полотен. Расстояние между соседними осадительными электродами 275 мм. Коронирующие электроды представляют собой трубчатые рамы, в которых натянуты ленточно-зубчатые элементы. Активная длина поля (высота электродов) 7,5 м. Удаление пыли с электродов осуществляется встряхиванием. Маркировка электрофильтра означает: унифицированный вертикальный; первое число после букв - количество секций, второе - площадь активного сечения одной секции, м2.
Мокрые электрофильтры ЭВМ предназначаются для улавливания туманов и капель серной кислоты с концентрацией (5...20) % об. в присутствии следов оксидов мышьяка, селена, соединений фтора. Электрофильтры выполняются вертикальными однопольными и односекционными. Корпус стальной цилиндрический, футеруется изнутри на месте монтажа кислотоупорными материалами.
Осадительные электроды выполнены из полимерных токопроводящих пластин, имеющих повышенную теплопроводность. Коронирующие электроды изготавливают из освинцованного провода. Маркировка электрофильтра означает: электрофильтр вертикальный мокрый.
Степень улавливания диспергированного вещества при концентрации на входе от 3 до 5% в пересчете на 100%-ю серную кислоту и двухступенчатой очистке достигает 99,7%. Допускается работа электрофильтра под разрежением до 6 кПа. Температура очищаемого газа 20...45°С. При скорости газового потока 1 м/с пропускная способность составляет 6,8 м3/с, а сопротивление аппарата - около 100 Па. Площадь активного сечения 6,8 м2, площадь осаждения 218 м2. Активная длина поля (высота электродов) 3,5 м, диаметр аппарата 3,6 м.
5. Подбор и расчет электрофильтров
При выборе типа электрофильтра исходят из расхода, физико-химических параметров газа и дисперсной примеси, а также условий размещения фильтра. Основные рекомендации могут быть сведены к следующему. Мокрые аппараты имеют более высокие коэффициенты очистки из-за уменьшения вторичного уноса, однако им присущи и общие недостатки мокрых способов: необходимость обработки или удаления загрязненных стоков и шлама, коррозия металлических узлов аппаратов, усложнение эксплуатации очистного устройства и т.д. Поэтому для осаждения твердых примесей сухие аппараты предпочтительнее мокрых. Из конструкций сухих электрофильтров вертикальную компоновку применяют при недостатке производственной площади, низкой начальной запыленности и не слишком мелкодисперсной пыли, так как время пребывания в них намного меньше, чем в горизонтальных.
Осаждение частиц в электрофильтрах происходит под действием кулоновских или электрических сил на частицы. Эти силы заставляют частицы двигаться к осадительным электродам со скоростью, определяемой равенством электрической силы и силы гидродинамического сопротивления. Скорость осаждения возрастает вместе со скоростью миграции частиц, поэтому последняя должна иметь максимальное значение.
Модели улавливания зависят от характера течения газа в осадителе. В простейшем случае частицы переносятся ламинарным потоком. В этом случае скорость движения частиц к осадительному электроду можно рассчитать, используя законы классической механики и электростатики:
Fe = q.E - закон Кулона электростатического взаимодействия;
- закон сопротивления Стокса-Кенингема.
Записывая Fe = Fc и решая уравнение, получаем для скорости миграции
,
где q - заряд частицы; Е - осаждающее поле; - вязкость газа; rч – радиус частицы; - средняя длина пробега молекул окружающего газа; А - безразмерный параметр, величина которого для атмосферного воздуха составляет 0,86.
Полное улавливание происходит тогда, когда самая медленная частица имеет достаточно времени для того, чтобы пройти путь от коронирующего электрода до осадительного. Условия идеального ламинарного течения никогда не реализуются на практике, хотя к ним можно приблизиться в некоторых типах двухступенчатых осадителей. В одноступенчатых фильтрах, обычно используемых в промышленности, течение газа носит сложный турбулентный характер.
У малых частиц, представляющих наибольший интерес для электрофильтрации, скорость миграции много меньше скорости газа в осадителе. Движение частиц в этих условиях определяется в первую очередь полем турбулентного течения и лишь во вторую очередь - электрическими силами. Частицы осаждаются тогда, когда они приближаются к осадительному электроду и заносятся в ламинарный пограничный слой, где электрические силы вынуждают их двигаться к осадительной поверхности.
Степень очистки газов и другие эксплуатационное характеристики электрофильтра могут быть достоверно определены только при наличии точной информации об опыте эксплуатации подобных конструкций в аналогичных условиях. При отсутствии необходимых сведений (отсутствие аналога, сложность или дороговизна поиска и получения информации) можно определить степень очистки расчетом. Однако расчетных методик, дающих надежные результаты, нет. Поэтому информация, полученная расчетным путем, может использоваться как предварительная и оценочная.