Файл: Содержание Введение Роберт Гук Биография Открытия Изобретения Сила упругости. Закон Гука Заключение Список литературы Введение.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 04.12.2023

Просмотров: 57

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


На рисунке 1, а изображена доска, лежащая на двух подставках. Если на ее середину поместить гирю, то под действием силы тяжести гиря начнет двигаться, но через некоторое время, прогнув доску, остановится (рис. 34,б). При этом сила тяжести окажется уравновешенной силой, действующей на гирю со стороны изогнутой доски и направленной вертикально вверх. Эта сила называется силой упругости.


Рисунок 1. Сила упругости
Сила упругости возникает при деформации. Деформация - это изменение формы или размеров тела. Одним из видов деформации является изгиб. Чем больше прогибается опора, тем больше сила упругости, действующая со стороны этой опоры на тело. Перед тем как тело (гирю) положили на доску, эта сила отсутствовала. По мере движения гири, которая все сильнее и сильнее прогибала свою опору, возрастала и сила упругости. В момент остановки гири сила упругости достигла силы тяжести и их равнодействующая стала равной нулю.

Если на опору поместить достаточно легкий предмет, то ее деформация может оказаться столь незначительной, что никакого изменения формы опоры мы не заметим. Но деформация все равно будет! А вместе с ней будет действовать и сила упругости, препятствующая падению тела, находящегося на данной опоре. В подобных случаях (когда деформация тела незаметна и изменением размеров опоры можно пренебречь) силу упругости называют силой реакции опоры.

Если вместо опоры использовать какой-либо подвес (нить, веревку, проволоку, стержень и т. д.), то прикрепленный к нему предмет также может удерживаться в покое. Сила тяжести и здесь будет уравновешена противоположно направленной силой упругости. Сила упругости при этом возникает из-за того, что подвес под действием прикрепленного к нему груза растягивается. Растяжение еще один вид деформации.

Сила упругости возникает и при сжатии. Именно она заставляет распрямляться сжатую пружину и толкать прикрепленное к ней тело (см. рис. 27,б).

Большой вклад в изучение силы упругости внес английский ученый Р. Гук. В 1660 г., когда ему было 25 лет, он установил закон, названный впоследствии его именем.Закон Гука гласит:

Сила упругости, возникающая при растяжении или сжатии тела, пропорциональна его удлинению.

Если удлинение тела, т. е. изменение его длины, обозначить через х, а силу упругости - через Fупр, то закону Гука можно придать следующую математическую форму:


Fупр = kx

где k - коэффициент пропорциональности, называемый жесткостью тела. У каждого тела своя жесткость. Чем больше жесткость тела (пружины, проволоки, стержня и т. д.), тем меньше оно изменяет свою длину под действием данной силы.

Единицей жесткости в СИ является ньютон на метр (1 Н/м).

Проделав ряд экспериментов, подтвердивших данный закон, Гук отказался от его публикации. Поэтому в течение долгого времени никто не знал о его открытии. Даже спустя 16 лет, все еще не доверяя своим коллегам, Гук в одной из своих книг привел лишь зашифрованную формулировку (анаграмму) своего закона. Она имела вид

ceiiinosssttuv.

Выждав два года, чтобы конкуренты могли сделать заявки о своих открытиях, он наконец расшифровал свой закон. Анаграмма расшифровывалась так:

tu tensio, sic vis

(что в переводе с латинского означает: каково растяжение, такова и сила). "Сила любой пружины,- писал Гук,- пропорциональна ее растяжению".

Гук изучал упругие деформации. Так называют деформации, которые исчезают после прекращения внешнего воздействия. Если, например, пружину несколько растянуть, а затем отпустить, то она снова примет свою первоначальную форму. Но ту же пружину можно растянуть на столько, что, после того как ее отпустят, она так и останется растянутой. Деформации, которые не исчезают после прекращения внешнего воздействия, называют пластическими.

Пластические деформации применяют при лепке из пластилина и глины, при обработке металлов - ковке, штамповке и т. д.

Для пластических деформаций закон Гука не выполняется.

В древние времена упругие свойства некоторых материалов (в частности, такого дерева, как тис) позволили нашим предкам изобрести лук - ручное оружие, предназначенное для метания стрел с помощью силы упругости натянутой тетивы.

Появившись примерно 12 тысяч лет назад, лук просуществовал на протяжении многих веков как основное оружие почти всех племен и народов мира. До изобретения огнестрельного оружия лук являлся самым эффективным боевым средством. Английские лучники могли пускать до 14 стрел в минуту, что при массовом использовании луков в бою создавало целую тучу стрел. Например, число стрел, выпущенных в битве при Азенкуре (во время Столетней войны), составило примерно б миллионов!

Широкое распространение этого грозного оружия в средние века вызвало обоснованный протест со стороны определенных кругов общества. В 1139 г. собравшийся в Риме Латеранский (церковный) собор запретил применение этого оружия против христиан. Однако борьба за "лучное разоружение" не имела успеха, и лук как боевое оружие продолжал использоваться людьми еще на протяжении пятисот лет.



Совершенствование конструкции лука и создание самострелов (арбалетов) привело к тому, что выпущенные из них стрелы стали пробивать любые доспехи. Но военная наука не стояла на месте. И в XVII в. лук был вытеснен огнестрельным оружием.

В наше время стрельба из лука является лишь одним из видов спорта.
Заключение
Роберт Гук был одним из наиболее значительных ученых 17-ого столетия. В то время как его исследования и результаты часто скрывались его соперником Иссаком Ньютоном, было невозможно подвергнуть сомнению значение его разработок в таких областях как физика, астрономия, биология, медицина.

Можно было бы сказать, что для Англии он был эквивалентом гения 14-ого столетия Леонардо да Винчи, что он был истинным человеком Ренессанса, который постоянно искал ответы на вопросы, и изобретал новые научные приборы. Изобретения Гука включают пружинное управление балансиром в часах и первый телескоп-рефлектор. Гук также работал как архитектор, хотя его мечты о перепроектировании Лондона после Большого пожара 1666 были ограничены меньшими размерами.

Важно понять, что Роберт Гук революционно продвинул микроскопию и астрономию, открыл двери, которые в один прекрасный день привели к открытиям ученых типа доктора Эдвина Хаббла, и что некоторые из его других его изобретений типа кардана, который используется в автомобильной промышленности, и его пружинного балансира, который являются основной частью механических часов, которые мы носим. Закон Гука и его теория окисления все еще используются современными учеными.

Увы, для такого гения и для всех его триумфов, Гук был болезненным с детства ребенком и ожесточенным потерей отца в свои 13 лет.

Роберт Гук был повторно захоронен где-то в Северном Лондоне в 18-ом столетии, в месте, которое никому не известно достоверно. Если его останки будут найдены, профессор Майкл Купер из Лондонского университета планирует использовать судебную методику антропологии для восстановления лица Роберта Гука, и благодаря этому, возможно большего признания, которое он заслуживает. Единственное изображение Роберта Гука, которым мы располагаем до сих пор, было витраж окна мемориала Гука в Cв. Бишопсгейт Элен, но оно было разрушено при бомбардировке.

Список литературы

1. Карпенков С.Х. Основные концепции естествознания. М.: ЮНИТИ, 2012.

2. Ньютон и философские проблемы физики XX века. Коллектив авторов под ред. М.Д. Ахундова, С.В. Илларионова. М.: Наука, 2014.

3. Гурский И.П. Элементарная физика. М.: Наука, 2014.

4. Большая Советская Энциклопедия в 30 томах. Под ред. Прохорова А.М., 3 издание, М., Советская энциклопедия, 2014.

5. Дорфман Я.Г. Всемирная история физики с начала XIX до середины XX вв. М., 2015.