Файл: Оглавление оглавление 3 2 Методы исследования атмосферы. (гот) 19 Введение.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 05.12.2023

Просмотров: 42

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.



  1. Строение атмосферы; процессы, происходящие в слоях атмосферы, методы исследования атмосферы.

  2. Строение атмосферы; процессы, происходящие в слоях атмосферы, методы исследования атмосферы.

ОГЛАВЛЕНИЕ

ОГЛАВЛЕНИЕ 3

2.2 Методы исследования атмосферы. (гот) 19

Введение

Метеорологические чрезвычайные ситуации – это опасные природные процессы и явления, возникающие в атмосфере под действием различных природных факторов или их сочетаний, оказывающие или могущие оказать поражающее воздействие на людей, сельскохозяйственных животных и растения, объекты экономики и окружающую природную среду.

К метеорологическим ЧС относятся:

• метеорологические явления, связанные с движением воздуха в атмосфере;

• метеорологические явления, связанные с высокими и низкими температурами;

• метеорологические явления, связанные с выпадением осадков;

• метеорологические явления, связанные с отложением льда и налипанием мокрого снега на электрических проводах;

• метеорологические явления, связанные с образованием гололеда на дорогах;

• туман.

К метеорологическим явлениям, связанным с движением воздуха в атмосфере, относятся:

• сильный ветер – движение воздуха относительно земной поверхности со скоростью или горизонтальной составляющей свыше 14 м/с;

• вихрь – атмосферное образование с вращательным движением воздуха вокруг вертикальной или наклонной оси;

• ураган – ветер разрушительной силы и значительной продолжительности, скорость которого превышает 32 м/с. Ураган "Катрина" начал формироваться 23 августа 2005 г. в районе Багамских островов. Скорость ветра во время урагана достигала 280 км/ч. 27 августа 2005 ураган прошел над побережьем Флориды недалеко от Майами и повернул в сторону Мексиканского залива. Наиболее тяжелый ущерб был причинен Новому Орлеану в штате Луизиана, где под водой оказалось около 80% площади города. В результате стихийного бедствия погибли 1836 человек;

• циклон – атмосферное возмущение с пониженным давлением воздуха и ураганными скоростями ветра, возникающее в тропических широтах и вызывающее огромные разрушения и гибель людей. Местное название тропического циклона – тайфун;


• шторм – длительный очень сильный ветер со скоростью свыше 20 м/с, вызывающий сильные волнения на море и разрушения на суше;

• смерч – сильный маломасштабный атмосферный вихрь диаметром до 1000 м, в котором воздух вращается со скоростью до 100 м/с, обладающий большой разрушительной силой (рис. 8.8). Смерч является наиболее опасным природным явлением, связанным с движением воздуха в атмосфере;

• шквал – резкое кратковременное усилие ветра до 20– 30 м/с и выше, сопровождающееся изменением его направления и связанное с конвективными процессами;

• пыльная буря – перенос больших количеств пыли или песка сильным ветром, сопровождающийся ухудшением видимости, выдуванием верхнего слоя почвы вместе с семенами и молодыми растениями, засыпанием посевов и транспортных магистралей. При пыльной буре следует закрыть лицо марлевой повязкой, платком, куском ткани, а глаза очками.

К метеорологическим явлениям, связанным с высокими и низкими температурами, относятся:

• сильный мороз – это метеорологическое явление, когда ожидаемые и наблюдаемые отрицательные аномалии среднесуточных температур воздуха в ноябре – марте составляют в течение не менее 5 суток от -10 до -25°С и более или минимальная температура воздуха близка к экстремальным значениям;

• сильная жара – это метеорологическое явление, когда ожидаемые и наблюдаемые положительные аномалии среднесуточных температур воздуха в мае – августе в течение не менее 5 суток составляют +27°С и более или максимальная температура воздуха близка к экстремальным значениям.

[1].

… … …

Глава 1. Строение и состав атмосферы

1.1. Состав и границы

Атмосфера — газовая оболочка, окружающая планету Земля и вращающаяся вместе с ней.

Атмосфера – это газовая оболочка небесного (или астрономического) тела, которая удерживается вокруг него благодаря действию гравитационных сил. Она есть не только у нашей планеты, а и у большинства массивных космических тел. Источник: https://kipmu.ru/atmosfera/


Толщина атмосферы 1500 км от поверхности Земли. Суммарная масса воздуха, то есть смеси газов, составляющих атмосферу: около 5,3 * 1015 т. Молекулярная масса чистого сухого воздуха составляет 29. Давление при 0°С на уровне моря 101 325 Па, или 760 мм. рт. ст.; критическая температура 140,7 °С; критическое давление 3,7 МПа. Растворимость воздуха в воде при 0 °С — 0,036 %, при 25 °С — 0,22 %.



Атмосферное давление — давление атмосферного воздуха на находящиеся в нем предметы и земную поверхность. Нормальным атмосферным давлением является показатель в 760 мм рт. ст. (101 325 Па). При повышении высоты на каждый километр давление падает на 100 мм.

Состав и границы

Оболочка, исходя из названия, состоит из смеси определенных газов. Стоит отметить, что ее изначальный химический состав определяется свойствами Солнца, когда планета находится на начальной стадии формирования. Затем наличие и количество тех или иных веществ меняется вследствие эволюции.

В состав атмосферы Земли входят преимущественно газы, а также разные примеси, например, частицы воды, пыль, лед, продукты горения и др. На 78% оболочка состоит из азота, на 21% – из кислорода. Среди прочих компонентов присутствуют аргон, углекислый газ, гелий, водород и др.

Интересный факт: если содержание большинства компонентов атмосферы Земли не меняется в течение многих лет, то концентрация углекислого газа постепенно растет, начиная с 19-го века.

В настоящее время его показатель – около 0,04%. Несмотря на плавный переход в космическое пространство, ученые утверждают, что заканчиваются границы оболочки в экзосфере (примерная высота – 500-1000 км). В авиации и космонавтике имеются свои представления о том, где заканчивается атмосфера. Так, Международная авиационная федерация называет пограничной отметкой высоту в 100 км. Самолеты не поднимаются выше данного предела. А космические корабли, шаттлы, достигая высоты 122 км, п ереключаются на аэродинамическое управление. Поэтому NASA предлагает такую отметку в качестве границы.

Основные параметры атмосферы: плотность воздуха, давление, температура и состав.

С увеличением высоты плотность воздуха и атмосферное давление уменьшаются. Температура меняется также в зависимости от изменения высоты. Вертикальное строение атмосферы характеризуется различными температурными и электрическими свойствами, разным состоянием воздуха.

В зависимости от температуры в атмосфере различают следующие основные слои
тропосферу, стратосферу, мезосферу, термосферу, экзосферу (сферу рассеяния). 

Переходные области атмосферы между соседними оболочками называют соответственно тропопауза, стратопауза и т.д.

Планетарный пограничный слой

Самый нижний шар тропосферы. Его толщина составляет 1-2 км. Состояние атмосферы в этой области и различные ее изменения напрямую зависят от земной поверхности или, как ее еще называют, подстилающей. Данный слой также разделяют на 3 дополнительных (по возрастанию): слой шероховатости; приземный; Экмана.

… … …

1,2 Расслоение атмосферы по вертикали

Глава 2. Организация и методы исследования атмосферы

Итак, в предыдущей главе было доказано, что организация социокультурных практик является одной их актуальных образовательных технологий как с точки зрения требований современного социума и культуры к школе, так и в логике ФГОСов (в частности на ступени основной школы).

… … …

2.1. Процессы, происходящие в слоях атмосферы(гот)

 Процессы, происходящие в атмосфере, возникают и развиваются в основном в результате превращений энергии, поступающей к ней от Солнца. В атмосфере постоянно осуществляется преобразование лучистой энергии; происходит круговорот тепла, влаги и различных примесей; развиваются оптические, электрические и многие другие явления. Поскольку атмосфера находится в постоянном взаимодействии с поверхностью Земли, при изучении процессов, происходящих в ней, учитывается также влияние географических факторов – характера поверхности, особенностей рельефа и т. д.

Лучистая энергия в атмосфере и на земной поверхности. Основным источником энергии почти для всех природных процессов, происходящих на поверхности земли и в атмосфере, является лучистая энергия, поступающая на Землю от Солнца. Энергия, поступающая к поверхности земли из глубинных ее слоев, выделяющаяся при радиоактивном распаде, привносимая космическими лучами, а также излучение, приходящее к Земле от звезд, ничтожно малы по сравнению с энергией, поступающей на Землю от Солнца.

Кроме лучистой энергии, то есть электромагнитных волн, от Солнца приходят к Земле также различные потоки заряженных частиц, главным образом электронов и протонов, движущихся со скоростями в сотни и даже тысячи километров в секунду. Электромагнитные же волны распространяются со скоростью 300000 км/с. Солнце представляет собой газовый шар, состоит в основном из водорода (64%) и гелия (32%). На долю остальных элементов приходится всего 4% его массы. В недрах Солнца происходят сложные ядерные реакции, при которых выделяются огромные количества энергии. Нижняя, наиболее плотная часть солнечной атмосферы называется фотосферой (сферой света). Она является основным источником энергии, излучаемой Солнцем. Над фотосферой находится менее плотный слой солнечной атмосферы – хромосфера (окрашенная сфера). Еще выше расположена так называемая солнечная корона. Газы, образующие Солнце, находятся в непрерывном бурном движении. В фотосфере наблюдаются более темные образования, называемые солнечными пятнами. Они представляют собой огромные воронки, образовавшиеся в результате вихревых движений газа. В хромосфере наблюдаются колоссальные взрывы – протуберанцы, обнаруживаемые как огненно- красные выступы на внешнем контуре видимого диска Солнца. Количество солнечных пятен, вспышек, протуберанцев периодически изменяется, примерно один раз в одиннадцать лет их число достигает максимума. В годы максимума солнечных пятен активизируются и другие явления на Солнце: усиливаются излучение ультрафиолетовой радиации и интенсивность потоков испускаемых Солнцем частиц. В эти же периоды наблюдаются и резкие возмущения земного магнитного поля, нарушается радиосвязь, увеличивается повторяемость и яркость полярных сияний. Кроме 11-летнего периода колебаний солнечной активности, наблюдается еще и 80-летний ее период. Солнечная радиация, поступившая на верхнюю границу атмосферы, на своем пути до земной поверхности претерпевает ряд изменений, вызванных ее поглощением и рассеиванием в атмосфере. Радиация, поступающая от Солнца в атмосферу и затем на земную поверхность в виде пучка параллельных лучей, называется прямой. Значительная часть прямой радиации, пришедшей к верхней границе атмосферы, достигает земной поверхности. Часть солнечной радиации рассеивается молекулами атмосферных газов и аэрозолями и поступает к земной поверхности в виде рассеянной радиации. Часть солнечной радиации, отражающаяся от земной поверхности и атмосферы (в основном от облаков), называется отраженной радиацией. Количественно лучистая энергия характеризуется потоком радиации. Поток радиации – это количество лучистой энергии, которое поступает в единицу времени на единицу поверхности.


Тепловой режим атмосферы. Тепловым режимом атмосферы называют характер распределения и изменения температуры в атмосфере. Тепловой режим атмосферы определяется главным образом ее теплообменом с окружающей средой, то есть с деятельной поверхностью и космическим пространством. Важное в метеорологии понятие «деятельная поверхность» дано в 1884 г. известным русским ученым А. И. Воейковым, трудами которого заложены научные основы микроклиматологии в России. Внешней деятельной поверхностью А. И. Воейков назвал поверхность, воспринимающую и отдающую энергию, являющуюся источником температурных колебаний прилегающих слоев воздуха и почвы. Поскольку процессы поглощения и излучения радиации, испарения и теплообмена происходят не только на поверхности, но всегда охватывают слой различной толщины, то выделяют также деятельный слой земной поверхности, в котором практически полностью усваивается поглощенная радиация. За исключением верхних слоев, атмосфера поглощает солнечную энергию сравнительно слабо. В частности, непосредственно солнечными лучами тропосфера нагревается незначительно. Основным источником нагревания нижних слоев атмосферы является тепло, получаемое ими от деятельной поверхности. В дневные часы, когда приход радиации преобладает над излучением, деятельная поверхность нагревается, становится теплее воздуха, и тепло передается от нее воздуху. Ночью деятельная поверхность теряет тепло путем излучения и становится холоднее воздуха. В этом случае воздух отдает тепло почве, в результате чего сам он охлаждается. Перенос тепла между деятельной поверхностью и атмосферой, а также в самой атмосфере может осуществляться с помощью следующих процессов. Большое влияние на процессы нагревания и охлаждения прилегающего к деятельной поверхности слоя атмосферы оказывает ее характер. При этом, тепловые воздействия суши и водной поверхности на атмосферу неодинаковы: деятельная поверхность суши отдает воздуху значительно большую часть получаемого ею лучистого тепла (35–50%), чем поверхность водоемов, которая большую часть получаемого тепла отдает более глубоким слоям. Много тепла на водоемах затрачивается также на испарение воды и лишь незначительная его часть расходуется на нагревание воздуха. Поэтому в периоды нагревания суши воздух над ней оказывается теплее, чем над водной поверхностью. Когда же деятельная поверхность охлаждается путем излучения, то суша, накопившая достаточного запаса тепла, сравнительно быстро охлаждается и охлаждает прилегающие слои воздуха. Моря, океаны и большие озера в теплое время года накапливают в своей толще значительное количество тепла. В зимнее время они отдают его воздуху. Поэтому воздух над водными поверхностями зимой теплее, чем над сушей. Поверхности материков, в свою очередь, являются неоднородными. Леса, болота, степи, поля отдают воздуху неодинаковое количество тепла. Кроме того, почвы различных видов (чернозем, торф, песок) также оказывают неодинаковое термическое влияние на воздух. На температуру воздуха влияет снежный покров, способствуя понижению ее зимой. Объясняется это большой относительной излучательной и отражательной способностью снежного покрова. Существенное влияние на температуру воздуха оказывает растительный покров. Поверхность густого растительного покрова поглощает почти всю приходящую к ней радиацию и практически является деятельной поверхностью. Прилегающий к ней воздух днем прогревается, а по направлению вверх и вниз от этой поверхности температура убывает. Ночью над поверхностью растительного покрова в результате ее излучения воздух оказывается наиболее холодным. В редком растительном покрове охлажденный воздух несколько опускается до уровня с более густой листвой. Днем воздух над растительным покровом нагревается, а ночью охлаждается меньше, чем над оголенной почвой. Это объясняется большой теплоемкостью растительного покрова, а также тем, что часть лучистой энергии, поступающей на растительный покров, расходуется в нем на различные физические и биологические процессы, главным образом, на испарение. В лесу максимальные и минимальные температуры воздуха наблюдаются над кронами деревьев или, если листва редкая, несколько ниже крон. Поэтому наибольшие амплитуды также отмечаются над кронами, а выше и ниже они уменьшаются. В среднем температура в лесу ниже, чем на открытой местности. Повышая ночные минимумы и понижая дневные максимумы, лес сглаживает суточные колебания температуры. Амплитуда суточного хода температуры воздуха в лесу примерно на 2° меньше, чем на открытой местности. Следует также отметить, что сквозь кроны деревьев радиация проникает в ослабленном виде. Количество радиации, достигающей оснований деревьев, зависит от многих факторов, в том числе от высоты, плотности и вида растительного покрова, от угла падения солнечной радиации. В зрелом древостое оснований деревьев достигает менее 20% радиации, но эта величина может уменьшаться и до 5%. В околополуденные часы под полог молодого березового леса в стадии полной листвы проникает 5–8% радиации, поступающей к кронам. С началом листопада прозрачность лесного полога увеличивается; в октябре после окончания листопада радиация в лесу составляет 20% радиации над лесом. Что касается вертикального распределения суммарной радиации в молодом березняке, то наиболее сильное ослабление радиации происходит в нижней густой части крон, где задерживается около 40% радиации. У основания крон проникающая радиация может составлять 8% суммарной радиации над лесом. В лесу не только уменьшается количество коротковолновой радиации, достигающей поверхности почвы, но изменяется соотношение между прямой и рассеянной. Значительная часть прямой солнечной радиации трансформируется в рассеянную. В целом, лесные массивы ослабляют интенсивность радиации в синем участке спектра (0,40–0,45 мкм) и усиливают в красном и инфракрасном участках (0,65–0,75 мкм). Радиационный, как и тепловой, режим в лесу зависит от возраста и сомкнутости леса, от пород деревьев и других факторов. Зимой лиственный лес оказывает меньшее влияние на суточную амплитуду температуры, чем хвойный. В летний период, когда деревья покрываются листьями, разности амплитуд лес – открытая