Файл: Печь первичного риформинга в производстве аммиака.docx

ВУЗ: Не указан

Категория: Курсовая работа

Дисциплина: Не указана

Добавлен: 06.12.2023

Просмотров: 321

Скачиваний: 12

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Смоленское областное государственное бюджетное профессиональное

образовательное учреждение

«Верхнеднепровский технологический техникум»

Курсовая работа

по дисциплине:

«Процессы и аппараты»

на тему:

«Печь первичного риформинга в производстве аммиака»

Выполнила студент(ка): группы №32 ХТНВ

Иванов А.В.

Руководитель курсовой

п. Верхнеднепровский

2023 год

Содержание

Введение

1.1 Теплообмен в трубчатой печи… 9

1.2 Основные показатели работы трубчатых печей… 14

2. Расчетная часть.

2.1 Тепловой баланс трубчатой печи. Расчет коэффициента

полезного действия и расхода топлива… 15

2.2 Выбор типоразмера трубчатой печи… 18

2.3 Расчет диаметра печных труб… 20

2.4 Расчет камеры конвекции… 22

2.5 Гидравлический расчет змеевика трубчатой печи… 26

Заключение

Список использованной литературы

1.Введение

Минеральные удобрения

Минеральные удобрения являются одним из важнейших видов продукции химической промышленности. Рост численности населения выдвигает перед всеми странами мира одну и ту же проблему – умелое управление способностью природы воспроизводить жизненные ресурсы и прежде всего продовольственные. Задача расширенного воспроизводства продуктов питания уже давно решается применением в сельском хозяйстве минеральных удобрений. Научными прогнозами и перспективными планами предусматривается дальнейшее увеличение мирового выпуска минеральных и органоминеральных удобрений, удобрений с регулируемым сроком действия.

Основными исходными продуктами при производстве этих удобрений являются аммиак (NH3) и азотная кислота (HN03). Аммиак получают в процессе взаимодействия газообразного азота воздуха и водорода (обычно из природного газа) при температуре 400−500° С и давления в несколько сот атмосфер в присутствии катализаторов. Азотная кислота получается при окислении аммиака. Около 70% всех азотных удобрений в нашей стране выпускается в виде аммиачной селитры, мочевины, или карбамида — CO (NH2)2 (46% N).


Это гранулированные или мелкокристаллические соли белого цвета, легко растворимые в воде. Благодаря сравнительно высокому содержанию азота, неплохим при правильном хранении свойствам и высокой эффективности практически во всех почвенных зонах и на всех культурах аммиачная селитра и мочевина являются универсальными азотными удобрениями. Следует, однако, учитывать ряд их специфических особенностей.

Аммиак

Аммиак представляет собой газ, не имеющий цвета, но обладающий резким специфическим запахом, формула аммиака  NH3. Плотность аммиака почти в два раза меньше, чем плотность воздуха. При температуре 15 oC она составляет 0,73 кг/м3. Плотность аммиака жидкого в нормальных условиях равна 686 кг/м3. Молекулярная масса вещества - 17,2 г/моль. Отличительной особенностью аммиака является его высокая растворимость в воде. Так, при температуре 0 °C ее значение достигает около 1200 объемов в объеме воды, при 20 °C – 700 объемов. Раствор «аммиак - вода» (аммиачная вода) характеризуется слабощелочной реакцией и довольно уникальным свойством по сравнению с другими щелочами: с увеличением концентрации плотность снижается. Аммиак в природных условиях образуется в результате разложения органических соединений, содержащих азот. Для использования в промышленности это вещество получают искусственным путем.

В промышленных условиях аммиак получают путем каталитического синтеза из азота и водорода: N2 + 3H2 → 2NH3 + Q. Процесс получения вещества проводят при температуре 500 °C и давлении 350 атм. В качестве катализатора используется пористое железо. Полученный аммиак удаляется охлаждением. Азот и водород, которые не прореагировали, возвращаются на синтез.

Нитрид водорода широко применяется в различных отраслях промышленности. Огромные его количества используются для производства азотной кислоты и различных удобрений (мочевина, нитрат аммония и др.), полимеров, синильной кислоты, соды, аммониевых солей и других видов продукции химического производства. В легкой промышленности свойства аммиака применяют при очистке и окрашивании таких тканей, как шелк, шерсть и хлопок. В сталелитейном производстве он используется для увеличения твердости стали путем насыщения ее поверхностных слоев азотом. В нефтехимической промышленности при помощи нитрида водорода нейтрализуют кислотные отходы. Благодаря своим термодинамическим свойствам жидкий аммиак используется в качестве хладагента в холодильном оборудовании. Раствор нитрида водорода (нашатырный спирт) применяется в медицине для выведения из обморочного состояния, стимуляции рвоты, для обработки рук медперсонала, при укусах насекомых и пр.



Производство аммиака

В трубопровод подают уже подготовленную смесь из трех частей водорода и одной азота. Она проходит через турбокомпрессор, где сжимается до указанного выше давления, и направляется в колонну синтеза с катализатором на встроенных полках. Процесс, как мы выяснили, сильно экзотермический. Выделяющимся теплом нагревается азотоводородная смесь. Из колонны выходит около 25 процентов аммиака и непрореагировавшие азот с водородом. Весь состав поступает в холодильник, где смесь охлаждается. Аммиак под давлением становится жидким. Теперь в работу вступает сепаратор, задача которого — отделить аммиак в сборник в нижней части и непрореагировавшую смесь, которая возвращается циркуляционным насосом обратно в колонну. Благодаря такой циркуляции азотоводородная смесь используется на 95 процентов. Жидкий аммиак по аммиакопроводу поступает на специальный склад. Все аппараты, использующиеся в производстве, максимально герметичны, что исключает утечку. Используется лишь энергия происходящих внутри экзотермических реакций. Схема замкнутая, малоотходная. Затраты снижены благодаря непрерывному и автоматизированному процессу. Производство аммиака не может не влиять на окружающую среду. Неизбежны газовые выбросы, включающие в себя аммиак, оксиды углерода и азота и прочие примеси. Выделяется низкопотенциальная теплота. Сбрасывается вода после промывки систем охлаждения и самого реактора. Поэтому в производство аммиака необходимо включать каталитическую очистку с наличием газа-восстановителя. Снижения количества сточных вод можно добиться заменой поршневых компрессоров на турбокомпрессоры. Низкопотенциальная теплота может быть утилизирована вводом теплоты высокопотенциальной. Однако это увеличит загрязненность дымовыми газами. Энерготехнологическая схема, включающая парогазовый цикл, где используются как тепло пара, так и продукты сгорания топлива, одновременно и повысит эффективность производства, и уменьшит выбросы .



Технологические аппараты и оборудование:

1-компрессоры;

2-подогреватели;

3-реактор гидрирования сероорганических соединений;

4-адсорбер H2S;

5-трубчатая печь (первичный риформинг);

6-шахтный конвертор (вторичный риформинг);


7-паровые котлы;

8-конверторы СО;

9-абсорбер СО2;

10-кипятильник;

11 -регенератор раствора моноэтаноламина;

12-насос;

13-аппарат для гидрирования остаточных СО и СО2;

14-воздушные холодильники;

15-конденсационная колонна;

16-испаритель жидкого NH3 (для охлаждения газа и выделения NH3);

17-колонна синтеза NН3;

18-водоподогреватель;

19-теплообменник;


1.2 Теплообмен в трубчатой печи

Трубчатая печь имеет камеры радиации и конвекции. В камере радиации (топочная камера), где сжигается топливо, размещена радиантная поверхность (экран), поглощающая тепло в основном за счет радиации.

В камере конвекции расположены трубы, воспринимающие тепло главным образом путем конвекции – при соприкосновении дымовых газов с поверхностью нагрева.

Сырье последовательно проходит через конвекционные и радиантные трубы и поглощает тепло; обычно радиантная поверхность воспринимает большую часть тепла, выделяемого при сгорании топлива.

Тепло эффективно передается излучением при охлаждении дымовых газов до 1000-1200 К. Снижение температуры дымовых газов до более низких значений часто бывает неоправданным, так как при этом радиантная поверхность работает с пониженной теплонапряженностью поверхности нагрева.

Эффективность теплопередачи конвекцией в меньшей степени зависит от температуры дымовых газов, поэтому таким способом тепло передается, когда передача тепла излучением оказывается недостаточно эффективной. Таким образом, конвекционная поверхность использует тепло дымовых газов и обеспечивает их охлаждение до температуры, при которой величина коэффициента полезного действия аппарата будет экономически оправданной.

Если тепло дымовых газов может быть использовано для иных целей, например, для подогрева воздуха или для производства водяного пара, то либо наличие конвекционной поверхности для нагрева сырья не является обязательным, либо размеры этой поверхности могут быть существенно уменьшены. При небольшой производительности иногда применяют печи без конвекционной поверхности, более простые в конструктивном отношении, но обладающие невысоким коэффициентом полезного действия.


Рассмотрим механизм процесса передачи тепла, протекающий в печи, на примере печи, состоящей из двух камер с настильным пламенем. Характерной особенностью этой печи является наклонное расположение форсунок внизу печи, обеспечивающих соприкосновение факела с поверхностью стены, размещенной в середине камер (рис.1).



1 – топочная камера;

2 – средняя излучающая стенка

с настильным пламенем;

3 – камера конвекции;

4 – трубы конвекционные;

5 – трубы радиантные.

I – сырье (ввод);

II – сырье (выход);

III – топливо и воздух.

Рис.1. Схема двухкамерной вертикальной печи с настильным пламенем.

В топочную камеру этой печи при помощи форсунки вводится распыленное топливо, а также необходимый для горения нагретый или холодный воздух. Высокая степень дисперсности топлива обеспечивает его интенсивное перемешивание с воздухом и более эффективное горение.

Соприкосновение факела с поверхностью стены обуславливает повышение его температуры; излучение происходит не только от факела, но и от этой раскаленной стены. Тепло, выделенное при сгорании топлива, расходуется на повышение температуры дымовых газов и частиц горящего топлива; последние раскаляются и образуют светящийся факел.

Температура, размер и конфигурация факела зависят от многих факторов и, в частности, от температуры и количества воздуха, подаваемого для горения топлива, способа подвода воздуха, от конструкции и нагрузки форсунки, теплотворной способности топлива, расхода форсуночного пара, величины радиантной поверхности (степени экранирования топки) и др.

При повышении температуры воздуха увеличивается температура факела, повышается скорость горения и сокращаются размеры факела. Размеры факела сокращаются и при увеличении (до известного предела) количества воздуха, поступающего в топку, так как избыток воздуха ускоряет процесс горения топлива.

При недостаточном количестве воздуха факел получается растянутым, топливо полностью не сгорает, что приводит к потере тепла. Чрезмерное количество воздуха недопустимо вследствие повышенных потерь тепла с отходящими дымовыми газами и более интенсивного окисления (окалинообразования) поверхности нагрева.