Файл: Тематический план Темы лекций Классификация тс. Телевещание. Системы персонального вызова, стандарты pocsag, ermes, flex. Транкинговые (зоновые) системы связи.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 06.12.2023

Просмотров: 513

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Классификация телекоммуникационных систем

Типы телекоммуникационных систем

Системы телевещания

Системы подвижной связи

Волоконно-оптические сети

Телевидение коллективного пользования

Принципы построения систем телевещания

Оборудование систем телевещания

Системы персонального радиовызова

Структура пейджинговых систем

Пейджинговый протокол POCSAG

Пейджинговый протокол ERMES

Пейджинговый протокол FLEX

Тенденции развития пейджинговой связи

Сети транкинговой связи

Организация транкинговой радиосвязи

Классификация сетей транкинговой связи

Принципы построения транкинговых сетей

Спутниковые системы связи

Классификация систем спутниковой связи

Принципы построения спутниковых систем связи

Краткий обзор спутниковых систем мобильной связи

Спутниковый Internet

Системы сотовой связи

Принципы функционирования систем сотовой связи

Эволюция систем сотовой связи

Аналоговые системы сотовой связи

Система сотовой связи стандарта NMT-450/900

Сотовая система подвижной связи стандарта AMPS

Система сотовой подвижной связи стандарта TACS

Цифровые системы сотовой подвижной связи

Система сотовой связи стандарта GSM

Процесс преобразования сигналов в мобильной станции

Система сотовой подвижной связи стандарта D-AMPS

Цифровые системы сотовой связи с кодовым разделением каналов

Микросотовые системы мобильной связи

Структура DECT - систем

Технические аспекты DECT

Организация протоколов DECT

Профили приложений DECT

Особенности сопряжения систем DECT с внешними сетями

Проектирование сотовых систем связи

Технология проектирования ССС

Модели распространения радиоволн

Программный пакет планирования радиосетей RPS-2

Программа моделирования сети радиосвязи deciBell Planner



Высокая защищенность от несанкционированного доступа. Поскольку ВОК практически не излучает в радиодиапазоне, то передаваемую по нему информацию трудно подслушать, не нарушая приема-передачи. Системы мониторинга (непрерывного контроля) целостности оп­тической линии связи, используя свойства высокой чувствительности волокна, могут мгновен­но отключить "взламываемый" канал связи и подать сигнал тревоги. Сенсорные системы, ис­пользующие интерференционные эффекты распространяемых световых сигналов (как по раз­ным волокнам, так и разной поляризации) имеют очень высокую чувствительность к колеба­ниям, к небольшим перепадам давления. Такие системы особенно необходимы при созда­нии линий связи в правительственных, банковских и некоторых других специальных службах, предъявляющих повышенные требования к защите данных.

Гальваническая развязка элементов сети. Данное преимущество оптического волокна заключается в его изолирующем свойстве. Волокно помогает избежать электрических "зе­мельных" петель, которые могут возникать, когда два сетевых устройства неизолированной вычислительной сети, связанные медным кабелем, имеют заземления в разных точках здания, например, на разных этажах. При этом может возникнуть большая разность потенциалов, что способно повредить сетевое оборудование. Для волокна этой проблемы просто нет.

Взрыво- и пожаробезопасность. Из-за отсутствия искрообразования оптическое волок­но повышает безопасность сети на химических, нефтеперерабатывающих предприятиях, при обслуживании технологических процессов повышенного риска.

Экономичность ВОК. Волокно изготовлено из кварца, основу которого составляет дву­окись кремния, широко распространенного, а потому недорогого материала, в отличие от ме­ди. В настоящее время стоимость волокна по отношению к медной паре соотносится как 2:5. При этом ВОК позволяет передавать сигналы на значительно большие расстояния без ретрансляции. Количество повторителей на протяженных линиях сокращается при использо­вании ВОК. При использовании солитонных систем передачи достигнуты дальности в 4000 км без регенерации (то есть, только с использованием оптических усилителей на промежуточных узлах) при скорости передачи выше 10 Гбит/с.


Длительность срока эксплуатации. Со временем волокно испытывает деградацию. Это оз­начает, что затухание в проложенном кабеле постепенно возрастает. Однако, благодаря со­вершенству современных технологий производства оптических волокон, этот процесс значительно замедлен, и срок службы ВОК составляет примерно 25 лет. За это время может смениться несколько поколений/стандартов приемо-передающих систем.

Удаленное электропитание. В некоторых случаях требуется удаленное электропитание узла информационной сети. Оптическое волокно не способно выполнять функции силового кабеля. Однако, в этих случаях можно использовать смешанный кабель, когда наряду с опти­ческими волокнами кабель оснащается медным проводящим элементом. Такой кабель широ­ко используется как в России, так и за рубежом.

Несмотря на многочисленные преимущества перед другими способами передачи ин­формации, волоконно-оптические сети имеют также и недостатки, главным образом из-за дороговизны прецизионного монтажного оборудования и надежности лазерных источников излучения. Многие из недостатков, вероятнее всего, будут нивелированы с приходом новых конкурентоспособных технологий в волоконно-оптические сети.

Недостатки ВОЛС

Стоимость интерфейсного оборудования. Электрические сигналы должны преобразовы­ваться в оптические, и наоборот. Цена на оптические передатчики и приемники остается пока еще довольно высокой. При создании оптической линии связи также требуются высокона­дежное специализированное пассивное коммутационное оборудование, оптические соедини­тели с малыми потерями и большим ресурсом на подключение-отключение, оптические разветвители, аттенюаторы.

Монтаж и обслуживание оптических линий. Стоимость работ по монтажу, тестированию и поддержке волоконно-оптических линий связи также остается высокой. Если же поврежда­ется ВОК, то необходимо осуществлять сварку волокон в месте разрыва и защищать этот участок кабеля от воздействия внешней среды. Производители тем временем поставляют на рынок все более совершенные инструмен­ты для монтажных работ с ВОК, снижая цену на них.



Требование специальной защиты волокна. Прочно ли оптическое волокно? Теоретиче­ски - да. Стекло, как материал, выдерживает колоссальные нагрузки с пределом прочности на разрыв выше 1ГПа (109 Н/м2). Это, казалось бы, означает, что волокно в единичном коли­честве с диаметром 125 мкм выдержит вес гири в 1 кг. К сожалению, на практике это не дос­тигается. Причина в том, что оптическое волокно, каким бы совершенным оно ни было, имеет микротрещины, которые инициируют разрыв. Для повышения надежности оптическое волокно при изготовлении покрывается специальным лаком на основе эпоксиакрилата, а сам оптиче­ский кабель упрочняется, например, нитями на основе кевлара (kevlar). Если требуется удов­летворить еще более жестким условиям на разрыв, кабель может упрочняться специальным стальным тросом или стеклопластиковыми стержнями. Но все это влечет увеличение стоимо­сти оптического кабеля.

Преимущества от применения волоконно-оптических линий связи настолько значитель­ны, что, несмотря на перечисленные недостатки оптического волокна, дальнейшие перспекти­вы развития технологии ВОЛС в информационных сетях более чем очевидны.

Телевидение коллективного пользования

Принципы построения систем телевещания


На первом этапе развитие систем коллективного телевизионного приёма (СКТП) происходило, в основном, в направлении совершенствования используемого оборудования и практически не затрагивало схем построения сетей телевизионного приёма; системы строились по принципу - одна антенна на один подъезд. По мере расширения территорий, т.е. увеличения числа жилых и общественных зданий, обслуживаемых СКТП, всё чаще отмечались случаи неудовлетворительного качества телевизионного изображения: приёмные антенны оказывались либо в зоне затенения, где напряжённость поля была недопустимо низкой, либо в зоне с высокой интенсивностью запаздывающих сигналов, обусловленной отражениями электромагнитных волн в тракте распространения. Ситуация особенно осложнялась в связи с застройкой городов зданиями, резко различавшимися по высоте, что привело к образованию «пораженных» зон, охватывающих целые кварталы.

Проведенные исследования показали, что наиболее эффективным решением возникшей проблемы является создание крупных систем коллективного телевизионного приёма (КСКТП), каждая из которых рассчитана на обслуживание от одной антенной установки, расположенной в точке с благоприятными условиями приёма, нескольких тысяч абонентских устройств.

Развитие техники коллективного телевизионного приёма связано с созданием систем кабельного телевидения (СКТ), каждая из которых может обслуживать до нескольких десятков тысяч абонентов. Использование таких систем позволяет решить вопросы обеспечения качественной доставки программ в районах со сложными условиями приёма, а также обеспечить передачу абонентам дополнительной информации - телетекстовой, каналов спутникового вещания.

Системы коллективного телевизионного приёма в зависимости от объёма охватываемых абонентов разделяют следующим образом:

  • системы коллективного телевизионного приёма;

  • крупные системы коллективного телевизионного приёма;

  • системы кабельного телевидения.

При этом принимается, что СКТП рассчитаны на обслуживание абонентов одного подъезда или здания, КСКТП - нескольких зданий, СКТ - большого жилого массива. К отличительным особенностям СКТ следует отнести также технико-экономическую целесообразность использования в них наряду с эфирным приёмом в стандартных каналах ТВ и ЧМ вещания других видов программ (спутниковых, локальных видеостудий и пр.). Следует отметить, что необходимым условием успешного развития СКТ является выбор такой схемы построения, при которой можно использовать в качестве низших звеньев распределительных сетей линий КСКТП и СКТП без существенных переделок, иначе реализация СКТ в районах со сложившейся застройкой связана с большими дополнительными капитальными затратами.


Наибольшие искажения (или затухания) сигнала возникают на участке распространения от передающей антенны (телецентра) до приёмной (абонента). Выбор места установки приёмных антенн, улучшение их параметров не всегда приводят к желаемому результату. Решить проблему качественного приёма сигнала системой кабельного телевидения можно созданием специальных линий подачи программ на головные станции (ГС) СКТ, в частности - с излучением в СВЧ-диапазоне или с использованием волоконно-оптических линий связи (ВОЛС). Однако такие решения оправданы только при высокой насыщенности крупных городов системами кабельного телевидения.

Значительна роль систем кабельного телевидения при распределении программ, получаемых через спутниковые системы вещания. Совмещение приёмных установок с эфирными ретрансляторами сопряжено с ухудшением параметров сигнала, обусловленным отражением в тракте распространения радиоволн от ретранслятора до приёмной антенны абонента. Устранить этот недостаток можно использованием СКТ для распространения ТВ-программ, полученных со спутникового ретранслятора.

Системы кабельного телевидения имеют потенциальную возможность организации двустороннего обмена информацией между абонентом и головной станцией (в диапазоне частот, расположенных ниже стандартных телевизионных каналов, например, 5÷30 МГц), что фактически значительно расширяет сферу услуг, предоставляемых СКТ. При этом необходимо иметь в виду, что СКТ являются широковещательными, т.е. способными распространять циркулярную информацию и собирать определённую информацию, поступающую от абонентов, но не могут устанавливать связь между любыми (абонент - абонент) абонентами СКТ.

Частотный план телевизионного вещания (таблица 2.1) охватывает спектр частот в метровом диапазоне 48.5-100 МГц и 170-230 МГц (частоты 100-170 МГц для вещания не используются), в дециметровом диапазоне - 470-790 МГц. Полоса частот одного канала составляет 8 МГц.

Структурная схема СВТ определяется в каждом конкретном случае и зависит от различных факторов: условий приёма, планировки жилого массива, характера застройки и т.п.

Наибольшее распространение среди различных схем построения СКТ получила древовидная структура с аналоговым способом передачи сигналов и частотным разделением каналов в метровом диапазоне волн.

На рис. 2.1 приведена простейшая схема СКТП, предназначенная для обслуживания абонентов одного здания. Сигналы ТВ и ЧМ-вещания, принятые антенной, после усиления и преобразования (если приём осуществлялся в дециметровом диапазоне) складываются на общую нагрузку. С выхода устройства сложения сигналы