Файл: Контрольная работа По дисциплине Защита информации в компьютерных сетях По теме.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 07.12.2023

Просмотров: 101

Скачиваний: 3

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Современные средства идентификации/аутентификации должны поддерживать концепцию единого входа в сеть. Единый вход в сеть - это, в первую очередь, требование удобства для пользователей. Если в корпоративной сети много информационных сервисов, допускающих независимое обращение, то многократная идентификация/аутентификация становится слишком обременительной. К сожалению, пока нельзя сказать, что единый вход в сеть стал нормой, доминирующие решения пока не сформировались. Таким образом, необходимо искать компромисс между надежностью, доступностью по цене и удобством использования и администрирования средств идентификации и аутентификации. Любопытно отметить, что сервис идентификации/аутентификации может стать объектом атак на доступность. Если система сконфигурирована так, что после определенного числа неудачных попыток устройство ввода идентификационной информации (такое, например, как терминал) блокируется, то злоумышленник может остановить работу легального пользователя буквально несколькими нажатиями клавиш.

Этапы идентификации и аутентификации пользователя, реализуемые в системе (на примере ОС Windows), представлены на рис. 1.

Первый шаг идентификации, поддерживаемый режимом аутентификации, реализуется при входе пользователя в систему. Здесь следует выделить возможность входа в штатном и в безопасном режиме (Safe Mode). В порядке замечания отметим, что принципиальным отличием безопасного режима является то, что при запуске системы в безопасном режиме можно отключить загрузку сторонних по отношению к системе драйверов и приложений. Поэтому, если в системе используется добавочная СЗИ от НСД, можно попытаться загрузить систему в безопасном режиме без компонент СЗИ от НСД, т.е. без средства защиты. С учетом же того, что загрузить систему в безопасном режиме может любой пользователь (в Unix системах – только Root), то СЗИ от НСД должна обеспечивать возможность входа в систему в безопасном режиме (после идентификации и аутентификации) только под учетной записью администратора.

Второй шаг состоит в запуске пользователем процессов, которые уже, в свою очередь, порождают потоки (именно потоки в общем случае и осуществляют обращение к ресурсам). Все работающие в системе процессы и потоки выполняются в контексте защиты того пользователя, от имени которого они так или иначе были запущены. Для идентификации контекста защиты процесса или потока используется объект, называемый маркером доступа (access token). В контекст защиты входит информация, описывающая привилегии,
учетные записи и группы, сопоставленные с процессом и потоком. При регистрации пользователя (первый шаг, см. рис. 1) в системе создается начальный маркер, представляющий пользователя, который входит в систему, и сопоставляющий его с процессом оболочки, применяемой для регистрации пользователя. Все программы, запускаемые пользователем, наследуют копию этого маркера. Механизмы защиты в Windows используют маркер, определяя набор действий, разрешенных потоку или процессу.


Рис.1. Этапы идентификации и аутентификации пользователя

В общем случае пользователь имеет возможность запуска процесса как с собственными правами, так и под учетной записью другого пользователя. Запуск пользователем процесса под другой учетной записью возможен только после выполнения процедуры аутентификации – пользователь должен ввести идентификатор и пароль, соответствующие той учетной записи, под которой им будет запущен процесс (например, подобную возможность в ОС Windows предоставляет утилита runas.exe, но, начиная с ОС Windows XP, эта функция уже вынесена в проводник - ее можно реализовать, нажав правой кнопкой мыши на выбранном в проводнике исполняемом файле).

В порядке замечания отметим следующее. С одной стороны, это очень полезная опция, которая может быть использована в корпоративных приложениях, когда на одном компьютере требуется обрабатывать конфиденциальные и открытые данные. При этом предполагается, что для обработки данных различных категорий создаются различные учетные записи. Данная опция предполагает, что одновременно (без перезагрузки) можно обрабатывать данные различных категорий, например, под одной учетной записью обрабатывать необходимым приложением конфиденциальные данные, под другой учетной записью запустить Internet-приложение (у Вас на мониторе может быть открыто одновременно два окна). Естественно, что реализация данной возможности выставляет и дополнительные требования к СЗИ от НСД (например, при подобном запуске приложения ОС Windows между пользователями не изолируется буфер обмена, который в ОС является "принадлежностью" рабочего стола).

Однако важнейшей особенностью рассматриваемого способа запуска процесса является то, что при этом система начинает функционировать в многопользовательском режиме – в системе одновременно зарегистрировано несколько пользователей. Как следствие, может возникнуть проблема однозначной идентификации пользователя при доступе к ресурсу, что характерно для решения задачи реализации разграничительной политики доступа к устройствам (об этом - ниже).



Третий шаг состоит в порождении процессом потоков, которые собственно и обращаются к ресурсам. Система предоставляет разработчикам приложений сервисы олицетворения. Сервис олицетворения (impersonation) предоставляет возможность отдельному потоку выполняться в контексте защиты, отличном от контекста защиты процесса, его запустившего, т.е. запросить олицетворить себя с правами другого пользователя, в результате - действовать от лица другого пользователя. Как следствие, именно на этом этапе и возникают вопросы корректности идентификации и аутентификации пользователя при запросе доступа к ресурсам, а задача идентификации и аутентификации пользователей при запросах на доступ сводится к контролю корректности олицетворения.

В порядке замечания отметим, что аналогичная ситуация имеет место и в ОС семейства Unix, где существуют понятия идентификатора и эффективного идентификатора (под которым собственно и осуществляется запрос доступа к ресурсам).Кратко рассмотрим основные технологии аутентификации.

Парольная аутентификация

Главное достоинство парольной аутентификации – простота и привычность. Пароли давно встроены в операционные системы и иные сервисы. При правильном использовании пароли могут обеспечить приемлемый для многих организаций уровень безопасности. Тем не менее, по совокупности характеристик их следует признать самым слабым средством проверки подлинности.

Чтобы пароль был запоминающимся, его зачастую делают простым (имя подруги, название спортивной команды и т.п.). Однако простой пароль нетрудно угадать, особенно если знать пристрастия данного пользователя. Известна классическая история про советского разведчика Рихарда Зорге, объект внимания которого через слово говорил "карамба"; разумеется, этим же словом открывался сверхсекретный сейф.

Иногда пароли с самого начала не хранятся в тайне, так как имеют стандартные значения, указанные в документации, и далеко не всегда после установки системы производится их смена.

Ввод пароля можно подсмотреть. Иногда для подглядывания используются даже оптические приборы.

Пароли нередко сообщают коллегам, чтобы те могли, например, подменить на некоторое время владельца пароля. Теоретически в подобных случаях более правильно задействовать средства управления доступом, но на практике так никто не поступает; а тайна, которую знают двое, это уже не тайна.


Пароль можно угадать "методом грубой силы", используя, скажем, словарь. Если файл паролей зашифрован, но доступен для чтения, его можно скачать к себе на компьютер и попытаться подобрать пароль, запрограммировав полный перебор (предполагается, что алгоритм шифрования известен).

Тем не менее, следующие меры позволяют значительно повысить надежность парольной защиты:

  • наложение технических ограничений (пароль должен быть не слишком коротким, он должен содержать буквы, цифры, знаки пунктуации и т.п.);

  • управление сроком действия паролей, их периодическая смена;

  • ограничение доступа к файлу паролей;

  • ограничение числа неудачных попыток входа в систему (это затруднит применение "метода грубой силы");

  • обучение пользователей;

  • использование программных генераторов паролей (такая программа, основываясь на несложных правилах, может порождать только благозвучные и, следовательно, запоминающиеся пароли).

  • Перечисленные меры целесообразно применять всегда, даже если наряду с паролями используются другие методы аутентификации.

Одноразовые пароли

Рассмотренные выше пароли можно назвать многоразовыми; их раскрытие позволяет злоумышленнику действовать от имени легального пользователя. Гораздо более сильным средством, устойчивым к пассивному прослушиванию сети, являются одноразовые пароли.

Наиболее известным программным генератором одноразовых паролей является система S/KEY компании Bellcore. Идея этой системы состоит в следующем. Пусть имеется односторонняя функция f (то есть функция, вычислить обратную которой за приемлемое время не представляется возможным). Эта функция известна и пользователю, и серверу аутентификации. Пусть, далее, имеется секретный ключ K, известный только пользователю.

На этапе начального администрирования пользователя функция f применяется к ключу K n раз, после чего результат сохраняется на сервере. После этого процедура проверки подлинности пользователя выглядит следующим образом:

  • сервер присылает на пользовательскую систему число (n-1);

  • пользователь применяет функцию f к секретному ключу K (n-1) раз и отправляет результат по сети на сервер аутентификации;

  • сервер применяет функцию f к полученному от пользователя значению и сравнивает результат с ранее сохраненной величиной. В случае совпадения подлинность пользователя считается установленной, сервер запоминает новое значение (присланное пользователем) и уменьшает на единицу счетчик (n).


На самом деле реализация устроена чуть сложнее (кроме счетчика, сервер посылает затравочное значение, используемое функцией f), но для нас сейчас это не важно. Поскольку функция f необратима, перехват пароля, равно как и получение доступа к серверу аутентификации, не позволяют узнать секретный ключ K и предсказать следующий одноразовый пароль.

Система S/KEY имеет статус Internet-стандарта (RFC 1938).

Другой подход к надежной аутентификации состоит в генерации нового пароля через небольшой промежуток времени (например, каждые 60 секунд), для чего могут использоваться программы или специальные интеллектуальные карты (с практической точки зрения такие пароли можно считать одноразовыми). Серверу аутентификации должен быть известен алгоритм генерации паролей и ассоциированные с ним параметры; кроме того, часы клиента и сервера должны быть синхронизированы.

Сервер аутентификации Kerberos

Kerberos – это программный продукт, разработанный в середине 1980-х годов в Массачусетском технологическом институте и претерпевший с тех пор ряд принципиальных изменений.

Клиентскиекомпоненты Kerberos присутствуют в большинстве современных операционных систем.

Kerberos предназначен для решения следующей задачи. Имеется открытая (незащищенная) сеть, в узлах которой сосредоточены субъекты – пользователи, а также клиентские и серверные программные системы. Каждый субъект обладает секретным ключом. Чтобы субъект C мог доказать свою подлинность субъекту S (без этого S не станет обслуживать C), он должен не только назвать себя, но и продемонстрировать знание секретного ключа. C не может просто послать S свой секретный ключ, во-первых, потому, что сеть открыта (доступна для пассивного и активного прослушивания), а, во-вторых, потому, что S не знает (и не должен знать) секретный ключ C. Требуется менее прямолинейный способ демонстрации знания секретного ключа.

Система Kerberos представляет собой доверенную третью сторону (то есть сторону, которой доверяют все), владеющую секретными ключами обслуживаемых субъектов и помогающую им в попарной проверке подлинности.

Чтобы с помощью Kerberos получить доступ к S (обычно это сервер), C (как правило – клиент) посылает Kerberos запрос, содержащий сведения о нем (клиенте) и о запрашиваемой услуге. В ответ Kerberos возвращает так называемый билет, зашифрованный секретным ключом сервера, и копию части информации из билета, зашифрованную секретным ключом клиента. Клиент должен расшифровать вторую порцию данных и переслать ее вместе с билетом серверу. Сервер, расшифровав билет, может сравнить его содержимое с дополнительной информацией, присланной клиентом. Совпадение свидетельствует о том, что клиент смог расшифровать предназначенные ему данные (ведь содержимое билета никому, кроме сервера и Kerberos, недоступно), то есть продемонстрировал знание секретного ключа. Значит, клиент – именно тот, за кого себя выдает. Подчеркнем, что секретные ключи в процессе проверки подлинности не передавались по сети (даже в зашифрованном виде) – они только использовались для шифрования. Как организован первоначальный обмен ключами между Kerberos и субъектами и как субъекты хранят свои секретные ключи – вопрос отдельный.