ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 09.12.2023
Просмотров: 34
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
| |
| |
Рис. 4.5. Схема процесса литья в машинах литья под давлением:
а – схема заливки расплава в машину с холодной камерой давления,
б – запрессовка расплава, в – извлечение отливки, г – машина с горячей камерой давления; 1 – гидравлический плунжер, 2 – камера, 3 – выталкиватель,
4 – металлический стержень, 5 – неподвижная полуформа, 6 – подвижная полуформа, 7 – пресс-форма, 8 – металлопровод,9 – обогреваемый тигель.
Машины с горячей камерой давления применяют главным образом для малоответственных деталей из легкоплавких алюминиевых и цинковых сплавов. Для более ответственных деталей применяют машины холодной камерой давления.
Литье под давлением является одним из самых высокопроизводительных и эффективных специальных способах литья, позволяющий полностью механизировать и автоматизировать весь цикл технологического процесса получения отливок.
Литье под давлением позволяет получать отливки, максимально приближенные по форме и размерам к готовой детали, сложной конфигурации с толщиной стенок 0,8 – 6 мм и отверстиями до 1 мм, массой от нескольких грамм до 45 кг.
Широкое применение в авиационной промышленности получил способ литья под давлением в вакууме, позволяющий производить весьма ответственные детали из алюминиевых, титановых и жаропрочных сплавов. Для этой цели созданы специализированные агрегаты, в состав которых входят вакуумные электропечи и машины литья под давлением в вакууме.
Недостатками литья под давлением являются: высокая стоимость пресс-форм, ограниченные размеры и массы отливок.
Одной из разновидностей способа литья под давлением является способ литья под регулируемым давлением, сущность которого заключается в заполнении формы расплавом и его затвердевание под действием избыточного давления воздуха или газа.
Литье под регулируемым давлением уменьшает усадочную пористость, повышает плотность и механические свойства отливок.
СВАРОЧНОЕ ПРОИЗВОДСТВО
15 Какова сущность шовной контактной сварки?
Шовной сваркой можно получать не только прочное, но и герметичное соединение. Сущность процесса заключается в том
, что заготовки 1 толщиной 0,3−3мм собирают внахлестку и затем зажимают усилием Р между двумя медными роликами 2 (рис. 9, а), к которым подводят электрический ток от сварочного трансформатора. С помощью отдельного привода одному или обоим роликам сообщается вращение. При включении тока и одновременном вращении роликов происходит перемещение и нагрев до расплавления контактных поверхностей свариваемых заготовок, которые под действием сжимающих усилий свариваются. Шовную сварку, как и точечную, можно выполнять при двустороннем (рис. 9, а) и одностороннем (рис. 9, б) расположениях электродов (роликов).
Различают два основных способа шовной сварки: с непрерывным (рис. 10, а)включением тока и прерывистым (рис. 10, б). Первый цикл используют для сварки низкоуглеродистых и низколегированных сталей толщиной до 1 мм. При втором цикле ток подается короткими импульсами продолжительностью 0,02–0,12с с перерывами между ними 0,02–0,35с. Вследствие этого в месте сварного соединения образуется ряд непрерывных перекрывающих друг друга точек (рис. 10, в). Этим способом получают высококачественные соединения из углеродистых и легированных сталей, а так же из алюминиевых и медных сталей.
а б Рис. 10. Циклы шовной сварки |
а | б |
в | |
Рис. 9. Схема шовной сварки |
ОБРАБОТКА МЕТАЛЛОВ ДАВЛЕНИЕМ
15 В чем заключается процесс прессования металлов?
Прессование – вид обработки давлением, при котором металл выдавливается из замкнутой полости через отверстие в матрице, соответствующее сечению прессуемого профиля.
Это современный способ получения различных профильных заготовок: прутков диаметром 3…250 мм, труб диаметром 20…400 мм с толщиной стенки 1,5…15 мм, профилей сложного сечения сплошных и полых с площадью поперечного сечения до 500 см
2.
Впервые метод был научно обоснован академиком Курнаковым Н.С. в 1813 году и применялся главным образом для получения прутков и труб из оловянисто-свинцовых сплавов. В настоящее время в качестве исходной заготовки используют слитки или прокат из углеродистых и легированных сталей, а также из цветных металлов и сплавов на их основе (медь, алюминий, магний, титан, цинк, никель, цирконий, уран, торий).
Технологический процесс прессования включает операции:
· подготовка заготовки к прессованию (разрезка, предварительное обтачивание на станке, так как качество поверхности заготовки оказывает влияние на качество и точность профиля);
· нагрев заготовки с последующей очисткой от окалины;
· укладка заготовки в контейнер ;
· непосредственно процесс прессования;
· отделка изделия (отделение пресс-остатка, разрезка).
Прессование производится на гидравлических прессах с вертикальным или горизонтальным расположением плунжера, мощностью до 10 000 т.
Применяются две метода прессования: прямой и обратный (рис. 11.6.)
При прямом прессовании движение пуансона пресса и истечение металла через отверстие матрицы происходят в одном направлении. При прямом прессовании требуется прикладывать значительно большее усилие, так как часть его затрачивается на преодоление трения при перемещении металла заготовки внутри контейнера. Пресс-остаток составляет 18…20 % от массы заготовки (в некоторых случаях – 30…40 %). Но процесс характеризуется более высоким качеством поверхности, схема прессования более простая.
Рис. 11.6. Схема прессования прутка прямым (а) и обратным (б) методом
1 – готовый пруток; 2 – матрица; 3 – заготовка; 4 - пуансон
При обратном прессовании заготовку закладывают в глухой контейнер, и она при прессовании остается неподвижной, а истечение металла из отверстия матрицы, которая крепится на конце полого пуансона, происходит в направлении, обратном движению пуансона с матрицей. Обратное прессование требует меньших усилий, пресс-остаток составляет 5…6 %. Однако меньшая деформация приводит к тому, что прессованный пруток сохраняет следы структуры литого металла. Конструктивная схема более сложная
Процесс прессования характеризуется следующими основными параметрами: коэффициентом вытяжки, степенью деформации и скоростью истечения металла из очка матрицы.
Коэффициент вытяжки
определяют как отношение площади сечения контейнера к площади сечения всех отверстий матрицы .
Степень деформации:
Скорость истечения металла из очка матрицы пропорциональна коэффициенту вытяжки и определяется по формуле:
где: – скорость прессования (скорость движения пуансона).
При прессовании металл подвергается всестороннему неравномерному сжатию и имеет очень высокую пластичность.
К основным преимуществам процесса относятся:
· возможность обработки металлов, которые из-за низкой пластичности другими методами обработать невозможно;
· возможность получения практически любого профиля поперечного сечения;
· получение широкого сортамента изделий на одном и том же прессовом оборудовании с заменой только матрицы;
· высокая производительность, до 2…3 м/мин.
Недостатки процесса :
· повышенный расход металла на единицу изделия из-за потерь в виде пресс-остатка;
· появление в некоторых случаях заметной неравномерности механических свойств по длине и поперечному сечению изделия;
· высокая стоимость и низкая стойкость прессового инструмента;
· высокая энергоемкость.
Волочение
Сущность процесса волочения заключается в протягивании заготовок через сужающееся отверстие (фильеру) в инструменте, называемом волокой. Конфигурация отверстия определяет форму получаемого профиля. Схема волочения представлена на рис.11.7.
Рис.11.7. Схема волочения
Волочением получают проволоку диаметром 0,002…4 мм, прутки и профили фасонного сечения, тонкостенные трубы, в том числе и капиллярные. Волочение применяют также для калибровки сечения и повышения качества поверхности обрабатываемых изделий. Волочение чаще выполняют при комнатной температуре, когда пластическую деформацию сопровождает наклеп, это используют для повышения механических характеристик металла, например, предел прочности возрастает в 1,5…2 раза.
Исходным материалом может быть горячекатаный пруток, сортовой прокат, проволока, трубы. Волочением обрабатывают стали различного химического состава, цветные металлы и сплавы, в том числе и драгоценные.
Основной инструмент при волочении – волоки различной конструкции. Волока работает в сложных условиях: большое напряжение сочетается с износом при протягивании, поэтому их изготавливают из твердых сплавов. Для получения особо точных профилей волоки изготавливают из алмаза. Конструкция инструмента представлена на рис. 11.8.
Рис.11.8. Общий вид волоки
Волока 1 закрепляется в обойме 2. Волоки имеют сложную конфигурацию, ее составными частями являются: заборная часть I, включающая входной конус и смазочную часть; деформирующая часть II с углом в вершине (6…18 0 – для прутков, 10…24 0 – для труб); цилиндрический калибрующий поясок III длиной 0,4…1 мм; выходной конус IV.
Технологический процесс волочения включает операции:
· предварительный отжиг заготовок для получения мелкозернистой структуры металла и повышения его пластичности;
· травление заготовок в подогретом растворе серной кислоты для удаления окалины с последующей промывкой, после удаления окалины на поверхность наносят подсмазочный слой путем омеднения, фосфотирования, известкования, к слою хорошо прилипает смазка и коэффициент трения значительно снижается;
· волочение, заготовку последовательно протягивают через ряд постепенно уменьшающихся отверстий;
· отжиг для устранения наклепа: после 70…85 % обжатия для стали и 99 % обжатия для цветных металлов ;
· отделка готовой продукции (обрезка концов, правка, резка на мерные длины и др.)
Технологический процесс волочения осуществляется на специальных волочильных станах. В зависимости от типа тянущего устройства различают станы: с прямолинейным движением протягиваемого металла (цепной, реечный); с наматыванием обрабатываемого металла на барабан (барабанный). Станы барабанного типа обычно применяются для получения проволоки. Число барабанов может доходить до двадцати. Скорость волочения достигает 50 м/с.
Процесс волочения характеризуется параметрами: коэффициентом вытяжки и степенью деформации.
Коэффициент вытяжки определяется отношением конечной и начальной длины или начальной и конечной площади поперечного сечения: