ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 12.12.2023

Просмотров: 17

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
 как разности между фактическими значениями и значениями модели.

Таблица 4.
Расчёт ошибок


Месяц

Объём продаж

Значение модели

Отклонения

1

8174,4

8415,985006

-241,585006

2

5078,3296

5165,11109

-86,7814863

3

4507,2061

4565,431382

-58,2253093

4

2257,1992

2202,924131

54,27503571

5

3400,6974

3403,597227

-2,89987379

6

2968,7178

2950,018671

18,69910521

7

2147,1426

2087,364714

59,77786521

8

1325,5674

1224,710757

100,8566247

9

2290,9561

2238,3689

52,58718971

10

2953,3411

2933,873153

19,46793921

11

4216,2848

4259,963999

-43,6792433

12

8227,5695

8471,812969

-244,24348

13

8991,84

8415,985006

575,8549942

14

5586,1626

5165,11109

421,0514747

15

4957,9267

4565,431382

392,4952977

16

2482,9191

2202,924131

279,9949527

17

3740,7671

3403,597227

337,1698622

18

3265,5896

2950,018671

315,5708832

19

2361,8568

2087,364714

274,4921232

20

1458,1241

1224,710757

233,4133637

21

2520,0517

2238,3689

281,6827987

22

3248,6752

2933,873153

314,8020492

23

4637,9132

4259,963999

377,9492317

24

9050,3264

8471,812969

578,5134687


Находим среднеквадратическую ошибку модели (Е) по формуле:

Е= Σ О2 : Σ (T+S)2

где:
Т
- трендовое значение объёма продаж;
S
– сезонная компонента;
О
- отклонения модели от фактических значений

Е= 0,003739 или 0.37 %

Величина полученной ошибки позволяет говорить, что построенная модель хорошо аппроксимирует фактические данные, т.е. она вполне отражает экономические тенденции, определяющие объём продаж, и является предпосылкой для построения прогнозов высокого качества.

Построим модель прогнозирования:

F = T + S ± E

Построенная модель представлена графически на рис. 5.

5. На основе модели строим окончательный прогноз объёма продаж. Для смягчения влияния прошлых тенденций на достоверность прогнозной модели, предлагается сочетать трендовый анализ с экспоненциальным сглаживанием. Это позволит нивелировать недостаток адаптивных моделей, т.е. учесть наметившиеся новые экономические тенденции:

Fпр t = a Fф t-1 + (1-а) Fм t

где:
F
пр t - прогнозное значение объёма продаж;
F
ф t-1– фактическое значение объёма продаж в предыдущем году;
F
м t - значение модели;
а
 – константа сглаживания.

Константу сглаживания рекомендуется определять методом экспертных оценок, как вероятность сохранения существующей рыночной конъюнктуры, т.е. если основные характеристики изменяются / колеблются с той же скоростью / амплитудой что и прежде, значит предпосылок к изменению рыночной конъюнктуры нет, и следовательно а ® 1, если наоборот, то а ® 0.



Рис. 5. Модель прогноза объёма продаж

Таким образом, прогноз на январь третьего сезона определяется следующим образом.

Определяем прогнозное значение модели:

Fм t = 1 924,92 + 162,44 =2087 ± 7,8 (руб.)

Фактическое значение объёма продаж в предыдущем году (Fф t-1составило 2 361руб. Принимаем коэффициент сглаживания 0.8. Получим прогнозное значение объёма продаж:

Fпр t =0,8*2 361 + (1-0.8) *2087 = 2306,2 (руб.)

Для учёта новых экономических тенденций рекомендуется регулярно уточнять модель на основе мониторинга фактически полученных объёмов продаж, добавляя их или заменяя ими данные статистической базы, на основе которой строится модель.