ВУЗ: Не указан

Категория: Учебное пособие

Дисциплина: Биология

Добавлен: 07.02.2019

Просмотров: 1033

Скачиваний: 6

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

1-2)

Семя

Внешнее строение семени однодольного растения

Цветковое растение начинает свою жизнь с семени. Семена растений различаются по форме, окраске, размерам, весу, но все они имеют сходное строение.

Зерновка пшеницы является не семенем, а плодом. Ткани плода в зерновке представлены лишь плёнчатым наружным слоем, получившим название плодовой оболочки. Вся остальная часть зерновки – семя.

Строение семени однодольных хорошо можно рассмотреть на примере пшеницы. У пшеницы зёрна представляют собой плоды – зерновки, содержащие только одно семя. Большую часть в зерне занимает эндосперм – особая запасающая ткань, содержащая органические вещества. Сбоку от эндосперма расположен зародыш. В нём различают зародышевый корешок, зародышевый стебелёк, зародышевую почечку и видоизменённую семядолю, расположенную на границе с эндоспермом. Эта семядоля при проращивании семени содействует поступлению питательных веществ из эндосперма к зародышу.

Строение семени двудольного растения

Строение семени двудольного растения легче рассматривать на примере фасоли состоящее из зародыша и семенной кожуры. После снятия семенной кожуры обнажается зародыш, который состоит из зародышевого корешка, зародышевого стебелька, двух массивных семядолей и заключённой между ними почечки. Семядоли – это первые видоизменённые листья зародыша. У фасоли и многих других растений они содержат запас питательных веществ, которые затем расходуются на питание проростка, а также выполняют защитную функцию по отношению к почечке.

Всходы двудольных растений, как правило, имеют две семядоли. Например такие двудольные растения, как горох, семядоли при прорастании оставляют в почве. А вот у однодольных растений, таких как пшеница, семядоля вообще не выходит из семени. Проросший стебель пшеницы вначале покрыт бесцветным колпачком с острой верхушкой, который защищает верхушку стебля и первого настоящего листа от всевозможных повреждений при росте в почве. А затем, пробившись сквозь верхний слой почвы и выйдя на свет, колпачок прекращает свой рост и разрывается. Из разрыва появляется настоящий зелёный лист злака.

3) ВЕГЕТАТИВНЫЕ ОРГАНЫ

У растений, части тела высших растений, выполняющие осн. функции питания и обмена веществ с внеш. средой. Не участвуют непосредственно в спорообразовании и половом размножении, но могут выполнять функцию вегетативного размножения. Осн. В. о.— листостебельные побеги (обеспечивают фотосинтез) и корни (обеспечивают водоснабжение и минер, питание). При изменении функций претерпевают метаморфозы. В эволюции В. о. возникли в результате усложнения тела растений при выходе на сушу и освоении воздушной и почвенной сред. У низших многоклеточных растений (водоросли), а также у грибов вегетативное тело (таллом, или слоевище) имеет более простое и однородное строение и либо совсем не расчленено на органы (нитчатые, нек-рые пластинчатые водоросли, мицелии грибов), либо расчленено на специализир. части, внешне сходные с органами высших растений (листоподобные, стебле-подобные, корнеподобные), но не имеющие сложного тканевого строения (мн. крупные зелёные и бурые водоросли). У животных В. о. ранее называли органы дыхания, пищеварения, выделения и др.




ПОЛЯРНОСТЬ

(от лат. polus, греч. polos — полюс), свойственная организмам специфич. ориентация процессов и структур в пространстве, приводящая к возникновению морфофизиол. различий на противоположных концах (или сторонах) клеток, тканей, органов и организма в целом. Особенно чётко П. проявляется у растений. Мн. одноклеточные водоросли образуют на нижней (затенённой) стороне корнеподобные выросты — ризоиды, а на верхней (освещенной) — органы фотосинтеза, к-рые, однако, могут быть переориентированы путём затенения верх, стороны клетки и освещения нижней. У многоклеточных низших растений П. выражена сильнее и является более фиксированной. Так, у зелёных водорослей она проявляется в том, что каждая клетка способна при известных условиях образовывать в своей морфологич. ниж. части ризоиды, а в верхней — фотосинтезирующий орган. У спор водорослей, мхов, хвощей, папоротников П. возникает лишь после соответствующего внеш. воздействия, когда клетки начинают делиться, давая начало новому организму. Первая перегородка в прорастающей споре ориентируется перпендикулярно падающему лучу света, разделяя спору на затенённую «корневую» и освещенную «заростковую» клетки. У высших семенных растений П. обнаруживается уже в зиготе и развивающемся зародыше, где формируются два зачаточных органа — побег с верхушечной почкой и корень. У формирующегося растит, организма П. проявляется в преобладающем направлении деления клеток, их роста и дифференцировки; ведущая роль в этом процессе принадлежит фитогормонам. П. сформировавшихся органов высших растений, как правило, сохраняется даже при резком нарушении их норм, положения. У животных П. обнаруживается как в клетках, так и в целом организме. В эпителиальных клетках различают базальную и дистальную части с характерным расположением отд. структур (ядра, комплекса Гольджи, секреторных гранул и т. д.). В нейронах П. выражается местоположением аксона и дендри-тов. У простейших П. проявляется в расположении органоидов по передне-задней или спинно-брюшной оси. В яйцеклетке анимально-вегетативная П. возникает в ходе оогенеза и стабилизируется в период созревания, редукционные (полярные) тельца местом своего выделения определяют положение анимального полюса. У гидроидных и червей установлена физиол. П. (градиент) личинки или взрослого организма — изменение (снижение) по продольной оси тела от переднего конца к заднему физиол. активности и чувствительности к повреждающим воздействиям. У одних животных передне-задняя ось тела совпадает с анимально-вегетативной осью яйца (протаксония), у других — перпендикулярна ей (плагиаксония), у третьих — расположена под разными углами к оси яйца. В основе поляризации — сложный комплекс взаимозависимых метаболич. и морфогенетич. перестроек. Явления П. обнаруживаются также при вегетативном размножении и регенерации. В эксперименте наблюдалось извращение П.; напр., у аксолотля после пересадки отрезка конечности пальцы могут сформироваться не только на дистальном, но и на проксимальном конце пересаженной части конечности.




Симме́три́я (др.-греч. συμμετρία «соразмерность», от μετρέω — «меряю»), в широком смысле — соответствие, неизменность (инвариантность), проявляемые при каких-либо изменениях,преобразованиях (например: положения, энергии, информации, другого). Так, например, сферическая симметрия тела означает, что вид тела не изменится, если его вращать в пространстве на произвольные углы (сохраняя одну точку на месте). Двусторонняя симметрия означает, что правая и левая сторона относительно какой-либо плоскости выглядят одинаково.

4) Жизнь семенных растений представляет собой совокупность генетически детерминированных биохимических, физиологических и структурных преобразований, которые начинаются в зародыше семени или в почке возобновления, протекают на протяжении формирования и развития побега или их системы и которые завершаются образованием нового поколения и естественным отмиранием организма. Из сохранившихся почек возобновления и семян образуются новые растения, что обеспечивает преемственность поколений и сохранение видов. Индивидуальное развитие организмов называется онтогенезом, а развитие особей одного вида или другого таксона в длительном ряду поколений – филогенезом, или историческим развитием. Хотя филогенез и онтогенез тесно взаимосвязаны, филогенез не является простой суммой онтогенезов. При изменении условий обитания на исторически значимых отрезках времени в популяциях видов возникают разнообразные мутации, протекают миграции и дрейф генов, рекомбинации генов родительских особей, осуществляется естественный отбор. Эти процессы приводят к сохранению наиболее приспособленных генотипов, образованию новых видов, а также таксонов более высокого уровня. В связи с этим процесс исторического развития получил название эволюция.
Индивидуальное развитие характеризуется рядом особенностей.
Во-первых, в онтогенезе сочетаются процессы роста растения и развития его составных частей. Рост – это необратимое увеличение числа, размеров и массы клеток организма. Понятие «рост» отражает количественные изменения в онтогенезе растения. В отличие от него, «развитие», по мнению профессора В.В. Полевого [1], представляет собой качественные изменения в структуре и функциональной активности растения и его частей. Развитие связано с поляризацией клеток и их дифференцировкой. Например, в результате биохимичес-ких изменений клетки основной паренхимы могут дифференциро-ваться с образованием вторичной меристемы – камбия. Другим приме-ром может служить дифференцировка апикальной меристемы побега пшеницы, приводящая к образованию и развитию генеративного органа – сложного колоса.
Во-вторых, онтогенез характеризуется необратимой однонаправ-ленностью структурных изменений клеток, тканей и органов. С одной стороны, это обеспечивает возникновение иерархической соподчинен-ности составных частей растения. Так, в результате цитогенеза в меристематически активных участках семени или почки образуются новые клетки. Из них в ходе гистогенеза формируются образователь-ные и постоянные ткани. Развитие тканей является условием органогенеза – образования и развития корня, стебля, листа и генеративных органов. В свою очередь развитие органов определяет габитус, т.е. внешний вид, всего растения. 




Основной план строения тела растения в морфологии истолковывался по-разному. Ранее принималось, что тело растения состоит из нескольких "основных частей" или органов, - корня, стебля, листа, цветка, семяпочек, волосков. Позднее число этих основных органов было сведено к трем  - корень, стебель и лист. В настоящее время стебель и его придаточные органы рассматриваются как единое целое - побег.

Вопрос об эволюционном происхождении органов растения решался длительное время. Одни ученые считали для надземных органов первичным стебель, другие - лист. И только открытие псилофитов позволило вполне однозначно утверждать, что у растений основных вегетативных органов два: 


корень и побег.

Таким образом, строение тела высшего растения можно представить так:

 

Исторически органы растений возникли позднее, чем ткани. Если ткани явились результатом приспособления растений к жизни на суше, т. е. в двух средах — воздушной и почвенной, то органы сформировались вследствие дифференциации тела растения в зависимости от выполняемой функции. Наиболее древний орган — побег (у псилофитов), выполнявший все функции вегетативных органов. Корень возник позднее и произошел от корнеподобных веточек, с помощью которых псилофиты укреплялись в почве.

Листья образовались в результате уплощения концевых отделов разветвлений побега древних растений.

Функции корня заключаются в закреплении растения в почве, поглощении из почвы воды и минеральных веществ, запасании питательных веществ, синтезе физиологически активных веществ (гормонов и др.).

Совокупность корней одного растения составляет корневую систему. В состав корневой системы входят главный корень, боковые и придаточные корни. Главный корень происходит от зародышевого корешка. От него, в свою очередь, отходят боковые корни, которые могут ветвиться. Корни могут происходить также от надземных частей растения — листьев или стебля. Такие корни называются придаточными. На способности растений образовывать придаточные корни основано размножение их черенками.

Известны два типа корневых систем — стержневая и мочковатая. У стержневой корневой системы, свойственной большинству двудольных растений, главный корень хорошо выражен. Если зародышевый корешок быстро отмирает, вместо него у основания побега образуются придаточные корни, приблизительно сходные по размерам. От них отходят боковые корни. Так формируется мочковатая корневая система, свойственная однодольным растениям и многим травянистым двудольным.

Корень обладает неограниченным ростом. Растет он верхушкой, где сосредоточена образовательная ткань. Верхушка корня защищена корневым чехликом. Кроме защитной функции корневой чехлик выполняет и другую, не менее важную — функцию определения направленности роста корня. Клетки чехлика способны реагировать на влияние силы тяжести и обусловливают положительный геотропизм корня.




5) Ко́рень (лат. radix) — осевой, обычно подземный вегетативный органвысших растений (сосудистых растений), обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю илистьям[1].



6)

7)

вторичное строение корня

строение корня, возникающее в результате деятельности вторичных меристем (камбия и феллогена), сопровождается ростом корня в толщину. Отличается от первичного строения корня наличием вторичной ксилемы, вторичной флоэмы и перидермы 

 


1 – первичная ксилема; 2 – вторичная ксилема; 3 – паренхимный радиальный луч; 4 – камбий; 5 – вторичная флоэма; 6 – первичная флоэма; 7 – перидерма).



Линька литопсов.

Литопсы - растения, относящиеся к суперсуккулентам.
Тело 
литопса - это пара сросшихся сочных листьев.
Для нормальной жизнедеят
ельности и цветения растения, литопсам необходимо обеспечивать сухую и прохладную зимовку. Во время зимней спячки происходит процесс линьки литопсов- смены старых листьев на новые.
Для того, что бы растение нормально пролиняло, необходимо полностью прекратить полив, поставить литопс в прохладное светлое место- 12 - 16 градусов тепла. И оставить в покое. Линька обычно заканчивается к марту - апрелю.
Такое содержание литопсов подходит к взрослым растениям. Если у вас сеянцы литопсов возрастом до года, зимой им необходимо обеспечить дополнительную подсветку и регулярный полив.

8) –

9) Придаточные корни.Образуются в любой части растения (стебле, листьях).

Совокупность всех корней растения образует корневую систему. Корневая система формируется в течение всей жизни растения. Ее формирование обеспечивают преимущественно боковые корни. Различают два типа корневой системы: стержневую и мочковатую.

Минеральное питание растений. Растения из почвы погло­щают необходимые им минеральные вещества. Минеральные ве­щества служат основой синтеза сложных органических соедине­ний, влияют на обмен веществ, являются катализаторами многих химических реакций, влияют на проницаемость цитоплазмы, под­держивают тургор и т. п. Разные виды растений нуждаются в раз­ном количестве минеральных веществ.

Минеральное питание растений — это поступление и усвоение из почвы водных растворов неорганических и некоторых органических веществ.

Нормальное развитие растений возможно при наличии макроэлементов: азота, фосфора, серы, калия, кальция, магния, железа. Соединения магния и железа необходимы для синтеза хлорофилла. Важную роль в жизни растения играют также такие микроэлементы, как бор, медь, марганец, цинк, молибден и т. п. В почве есть все эти элементы, но не всегда количество их достаточно.

Потребность растений в химических элементах изучают с помощью метода водных культур. Впервые этот метод применил английский ученый Д. Вудвордеще в 1699 году. Детальнейшая обработка была лишь в середине XIX века. Растения выращиваются без почвы в водных растворах минеральных веществ при оптимальных условиях (температуры, давления, поступления кислорода — аэрации). Наблюдают состояние растений в зависимости от компонентов водного раствора. Вместо почвы могут быть инертные субстраты — стеклянные шарики, гравий, гранулированный полиэтилен и т. п. Это модификация метода водных культур, которая называется методом гравийных культур, илигидропоникой. Этот метод используют для выращивания культурных растений. Иног­да используют аэропонику  метод опрыскивания, увлажнения корней в воздухе растворами веществ.