Файл: Рабочая программа элективного курса Математика в задачах.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 12.12.2023

Просмотров: 38

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Муниципальное бюджетное общеобразовательное учреждение

гимназия г. Гурьевска

Рабочая программа

элективного курса « Математика в задачах» в 6 «А», «В» классах.

Составила Самохина О.В.

учитель математики

г. Гурьевск
2016 г.

Рабочая программа составлена на основе Федерального Государственного образовательного стандарта основного общего образования, утверждённого приказом №1897 Министерства образования и науки РФ от 17.12.2010 г. и «Примерные программы основного общего образования. Математика» М.: Просвещение, 2011, учебного плана на текущий учебный год и направлена на обеспечение дополнительной подготовки по математике.

Данная программа призвана помочь обучающимся развить умения и навыки в решении задач, научить грамотному подходу к решению текстовых задач. Курс содержит различные виды арифметических задач. С их помощью обучающиеся получают опыт работы с величинами, постигают взаимосвязи между ними, получают опыт применения математики к решению практических задач.

Изучение данного курса актуально в связи с тем, что рассмотрение вопроса решения текстовых задач не выделено в отдельные блоки учебного материала. Решение задач встречается в разных темах, но не указываются основные общие способы их решения, как правило, не выделяются одинаковые взаимосвязи между компонентами задачи. К тому же, недостаточно внимания уделяется решению задач на проценты, которые рассматриваются в 5 классе и затем встречаются в экзаменационных работах за курс основной и средней (полной) общей школы.

Арифметические способы решения текстовых задач позволяют развивать умение анализировать задачные ситуации, строить план решения с учётом взаимосвязей между известными и неизвестными величинами (с учётом типа задачи), истолковывать результат каждого действия в рамках условия задачи, проверять правильность решения с помощью обратной задачи, то есть формулировать и развивать важные общеучебные умения.

Использование алгоритмов, таблиц, рисунков, общих приемов дает возможность ликвидировать у большей части обучающихся страх перед текстовой задачей, научить распознавать типы задач и правильно выбирать прием решения. Курс является дополнением школьного учебника по математике для 6 класса, направлен на формирование и развитие у обучающихся умения решать текстовые задачи. Данный курс направлен на расширение знаний обучающихся, повышения уровня математической подготовки, на развитие умения составлять задачи, имеющие практическое значение.


Обучение математике в основной школе направлено на достижение следующих целей:

в направлении личностного развития:

  • формирование представлений о математике, как части общечеловече­ской культуры, о значимости математики в раз­витии цивилизации и современ­ного общества;

  • развитие логического и критического мышления, куль­туры речи, способно­сти к умствен­ному эксперименту;

  • формирование интеллектуальной честности и объектив­ности, способно­сти к преодоле­нию мыслительных стереоти­пов, вытекающих из обыденного опыта;

  • воспитание качеств личности, обеспечивающих соци­альную мобиль­ность, способ­ность принимать самостоятель­ные решения;

  • формирование качеств мышления, необходимых для адаптации в современ­ном информа­ционном обществе;

  • развитие интереса к математическому творчеству и ма­тематических способ­ностей;

в метапредметном направлении:

  • развитие представлений о математике как форме опи­сания и методе позна­ния действи­тельности, создание условий для приобретения первоначаль­ного опыта математиче­ского моделирования;

  • формирование общих способов интеллектуальной дея­тельности, характер­ных для мате­матики и являющихся осно­вой познавательной куль­туры, значимой для различных сфер человеческой деятельности;

в предметном направлении:

• овладение математическими знаниями и умениями, не­обходимыми для про­долже­ния образования, изучения смеж­ных дисциплин, применения в повсе­дневной жизни;

• создание фундамента для математического развития, формирования меха­низмов мышле­ния, характерных для мате­матической деятельности.

Общая характеристика учебного предмета.

Содержание математического образования применительно к основной школе представлено в виде следующих содержательных разделов. Это арифметика; алгебра; функции; вероятность и статистика; геометрия. Наряду с этим в содержание основного общего образования включены два дополнительных методологических раздела: логика и множества; математика в историческом развитии, что связано с реализацией целей общеинтеллектуального и общекультурного развития обучающихся. Содержание каждого из этих разделов разворачивается в содержательно-методическую линию, пронизывающую все основные разделы содержания математического образования на данной ступени обучения. При этом первая линия – «Логика и множества» – служит цели овладения учащимися некоторыми элементами универсального математического языка, вторая – «Математика в историческом развитии» – способствует созданию общекультурного, гуманитарного фона изучения курса.



Содержание раздела «Арифметика» служит базой для дальнейшего изучения обучающимися математики, способствует развитию их логического мышления, формированию умения пользоваться алгоритмами, а также приобретению практических навыков, необходимых в повседневной жизни. Развитие понятия о числе в основной школе связано с рациональными и иррациональными числами, формированием первичных представлений о действительном числе. Завершение числовой линии (систематизация сведений о действительных числах, о комплексных числах), так же как и более сложные вопросы арифметики (алгоритм Евклида, основная теорема арифметики), отнесено к ступени общего среднего (полного) образования.

Содержание раздела «Алгебра» способствует формированию у обучающихся математического аппарата для решения задач из разных разделов математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей процессов и явлений реального мира. В задачи изучения алгебры входят также развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики, овладение навыками дедуктивных рассуждений. Преобразование символьных форм вносит специфический вклад в развитие воображения обучающихся, их способностей к математическому творчеству. В основной школе материал группируется вокруг рациональных выражений, а вопросы, связанные с иррациональными выражениями, с тригонометрическими функциями и преобразованиями, входят в содержание курса математики на старшей ступени обучения в школе.

Содержание раздела «Функции» нацелено на получение школьниками конкретных знаний о функции как важнейшей математической модели для описания и исследования разнообразных процессов. Изучение этого материала способствует развитию у учащихся умения использовать различные языки математики (словесный, символический, графический), вносит вклад в формирование представлений о роли математики в развитии цивилизации и культуры.

Раздел «Вероятность и статистика» — обязательный компонент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования у обучающихся функциональной грамотности – умения воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчеты. Изучение основ комбинаторики позволит обучающемуся осуществлять рассмотрение случаев, перебор и подсчет числа вариантов, в том числе в простейших прикладных задачах. При изучении статистики и вероятности обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.


Цель содержания раздела «Геометрия» — развить у обучающихся пространственное воображение и логическое мышление путем систематического изучения свойств геометрических фигур на плоскости и в пространстве и применения этих свойств при решении задач вычислительного и конструктивного характера. Существенная роль при этом отводится развитию геометрической интуиции. Сочетание наглядности со строгостью является неотъемлемой частью геометрических знаний. Материал, относящийся к блокам «Координаты» и «Векторы», в значительной степени несет в себе межпредметные знания, которые находят применение как в различных математических дисциплинах, так и в смежных предметах.

Особенностью раздела «Логика и множества» является то, что представленный в нем материал преимущественно изучается при рассмотрении различных вопросов курса. Соответствующий материал нацелен на математическое развитие обучающихся, формирование у них умения точно, сжато и ясно излагать мысли в устной и письменной речи.

Раздел «Математика в историческом развитии» предназначен для формирования представлений о математике как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения. На него не выделяется специальных уроков, усвоение его не контролируется, но содержание этого раздела органично присутствует в учебном процессе как своего рода гуманитарный фон при рассмотрении проблематики основного содержания математического образования.

Место элективного курса в учебном плане.

В соответствии с учебным планом МБОУ гимназии города Гурьевска программа рассчитана на 35 часов при 1 часе в неделю.

Результаты освоения элективного курса.

Изучение математики позволяет достичь следующих результатов

в личностном направлении:

  • умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

  • критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;

  • представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;

  • креативность мышления, инициатива, находчивость, активность при решении математических задач;

  • умение контролировать процесс и результат учебной математической деятельности;

  • способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;


в метапредметном направлении:

  • первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;

  • умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

  • умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

  • умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;

  • умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

  • понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;

  • умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

  • умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

в предметном направлении:

  • умение работать с математическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли в устной и письменной речи с применением математической терминологии и символики, использовать различные языки математики, проводить классификации, логические обоснования, доказательства математических утверждений;

  • овладение геометрическим языком, умение использовать его для описания предметов окружающего мира; развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических построений;

  • усвоение систематических знаний о плоских фигурах и их свойствах, а также на наглядном уровне – о простейших пространственных телах, умение применять систематические знания о них для решения геометрических и практических задач;

  • умение измерять длины отрезков, величины углов, использовать формулы для нахождения периметров, площадей и объемов геометрических фигур;

  • умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера.