Файл: Применение точечного и интервального оценивания в экономике. Примеры применения. Погрешность оценки.docx
Добавлен: 12.12.2023
Просмотров: 61
Скачиваний: 4
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Автономная некоммерческая образовательная организация высшего образования «Сибирский институт бизнеса и информационных технологий»
РЕФЕРАТ
Дисциплина: Высшая математика
Тема: Применение точечного и интервального оценивания в экономике. Примеры применения. Погрешность оценки.
Выполнил: студент группы
МСШ -2121(2)
Ф.И.О. Семенова Екатерина Сергеевна
Город: Омск
Омск 2022
Содержание
ВВЕДЕНИЕ 2
1 Точечное оценивание 4
2 Интервальное оценивание 12
Заключение 15
Список используемых источников 16
ВВЕДЕНИЕ
Главной задачей статистики является количественная оценка имеющихся взаимосвязей между экономическими явлениями и процессами.
Экономические явления взаимосвязаны и взаимообусловлены. Следствием этого является то, что значения соответствующих экономических показателей изменяются во времени с учетом этих взаимосвязей. Так, например, известно, что совокупный спрос зависит от уровня цен, потребление – от располагаемого дохода, инвестиции – от процентной ставки и так далее. Перед исследователем стоит задача выявления таких связей, количественная их оценка и изучение возможности использования выявленных связей в экономическом анализе и прогнозировании. Разработкой соответствующего инструментария и его применением для решения конкретных практических экономических задач как раз и занимается экономическая статистика.
В основе любого исследования лежит построение экономико-математической модели, адекватной изучаемым реальным экономическим явлениям и процессам.
Процесс построения данных моделей начинается с качественного исследования проблемы методами экономической теории, формулируются цели исследования, выделяются факторы, влияющие на изучаемый показатель, и формулируются предположения о характере предполагаемой зависимости.
Наибольший интерес для исследователя представляют причинно-следственные отношения между явлениями, что позволяет выявлять факторы, оказывающие основное влияние на вариацию изучаемых явлений и процессов.
Причинно-следственное отношение – это такая связь между явлениями, при которой изменение одного из них, называемого причиной, ведет к изменению другого, называемого следствием. Следовательно, причина всегда предшествует следствию.
Цель реферата – рассмотрение теоретических основ статистического оценивания.
1 Точечное оценивание
Как и известно, выборка х1, х2, х3,…,хn является реализацией случай-ного вектора (Х1; Х2;… Хn). Это значит, что каждая числовая характеристика выборки есть реализация случайной величины, которая от выборки к выборке может принимать различные значения и, следовательно, сама является случайной. Такую случайную величину называют выборочной функцией или статистикой и обозначают г=г. Эта запись выражает зависимость выборочной функции от случайных компонент Хi, i=, вектора (Х1; Х2;… Хn). Например, выборочными функциями являются среднее арифметическое , статистическая дисперсия , мода, медиана
Так как выборочная статистика величина случайная, то она имеет закон расрпделения, зависящий от закона распадения случайной величины Х в генеральной совокупности.
Пусть требуется подобрать распределение для исследуемой случайной величины Х по выборке х1, х2, х3,…,хn, извлеченной из генеральной совокупности с неизвестной функцией распределения F(х). Выбрав распределение (нормальное, биноминальное, показательное или др.), исходя из анализа выборки (например, по вид гистограммы или по виду полигона относительных частот), мы по данным выборки должны оценить параметры соответствующего распределения. Например, для нормального распре-деления нужно оценить параметры m и ; для распределения Пуасона - параметр и т.д.
Решение вопросов о "наилучшей оценке" неизвестного параметра и составляет теорию статистического оценивания.
Выборочная числовая характеристика, применяемая для получения оценки неизвестного параметра генеральной совокупности, называется точечной оценкой.
Например, Х - среднее арифметическое, может служить оценкой математического ожидания М (Х) генеральной совокупности . В принципе для неизвестного параметра а может существовать много число-вых характеристик выборки, которые вполне подходяще для того, чтобы служить оценками. Например, среднее арифметическое, медиана, мода могут показаться вполне приемлемыми для оценивания математического ожидания М (Х) совокупности. Чтобы решить, какая из статистик в данном множестве наилучшая
, необходимо определить некоторые желаемые свойства таких оценок, т.е. указать условия, которым должны удовлетворять оценки.
Такими условиями являются: несмещенность, эффективности состоятельность.
Если М (г)=а, то г называется несмещенной оценкой а.
В других случаях говорят. Что оценка смещена.
Несмещенность оценки означает, что если использовать эту оценку, то в одних случаях может получиться. Что мы завышаем искомый параметр совокупности, в других - занижаем. Однако в среднем мы будет "попадать в цель".
Так, например, несмещенной оценкой для математического ожидания М(Х)=а случайной величины Х является средняя арифметическая = г.
Действительно,
,
так как результаты выборки х1, х2, х3,…,хn рассматривают как n независимых случайных величин Х1, Х2, Х3,…,Хn, каждая из которых распределена по тому же закону, что и случайная величина Х.
Ели существует больше одной несмещенной оценки, то выбирают более эффективную оценку, т.е. ту, для которой величина второго момента М (г - а)2 меньше.
Оценка г1 называется более эффективной, чем оценка г2, если
М (г1 - а)2< М (г2 - а)2.
Если обозначить через b= М(г) - а смещение оценки, то
М(г - а)2=D(г)+b2, так как М(г - М(г)+ М(г) - а)2= М((г - М(г))+ +М(г) - а))2= М((г - М(г))+b)2= Мг - М(г))2+2bM(г - М(г)) + M(b2) = =D(г)+b2 (M(г - М(г))=0, M(b2)=b2). Поэтому более эффективной оценкой будем считать ту несмещенную оценку, которая имеет меньшую дисперсию.
В частности, средняя арифметическая = г является наиболее эффективной оценкой математического ожидания М(Х)= а, так как
Все другие оценки М(Х) будут обладать большими дисперсиями. Например,
Минимальную величину среднеквадратической погрешности оценивают, используя неравенство Рао-Крамера
,где b(a) - смещение оценки; n - объем выборки; функция носит название информации Фишера. Любая несмещенная оценка, а, для которой b(a)0 удовлетворяет неравенству
Таким образом, наименьшее возможное знамени среднеквадратических отклонений отлично от нуля и определяется правыми частями приведенных выше неравенств. При использовании той или иной оценки желательно, чтобы точность оценивания увеличилась с возрастанием объема производимой выборки. Предельная точность будет достигнута в том случае, когда численное значение оценки совпадает со значением параметра при неограниченном увеличении объема выборки. Такие оценки будет называться состоятельными.
Оценка г называется состоятельной оценкой а, если при n она сходится по вероятности к а, то есть если .
Например, средняя арифметическая = г является состоятельной оценкой математического ожидания М(Х)= а совокупности, так как, согласно закону больших чисел,
Наконец, при построении оценки г должна использоваться вся информации, содержащаяся в выборке, о неизвестном параметре а, то есть оценка должна быть достаточной. Если г - достаточная оценка. То никакая друга оценка не может дать о неизвестном параметре а дополнительных сведений.
При выборе оценок следует принимать во внимание перечисленные свой свойства и учитывать относительную простоту вычислений. Нередко выбирается не эффективная оценка только потому, что ее вычисление намного проще, чем вычисление эффективной оценки. Например, при контроле качества продукции мерой разброса совокупности часто служит выборочный размах, используемой вместо более сложной и более эффективной оценки - выборочного стандартного отклонения. Отметим, что при оценивании на основе малого числа наблюдений различие в эффективности оценок невелико.
Пусть случайная величина имеет неизвестную характеристику а. Такой характеристикой может быть, например, закон распределения, математическое ожидание, дисперсия, параметр закона распределения, вероятность определенного значения случайной величины и т.д. Пронаблюдаем случайную величину n раз и получим выборку из ее возможных значений
Существует два подхода к решению этой задачи. Можно по результатам наблюдений вычислить приближенное значение характеристики, а можно указать целый интервал ее значений, согласующихся с опытными данными. В первом случае говорят о точечной оценке, во втором – об интервальной.
Определение. Функция результатов наблюдений
Для одной и той же характеристики можно предложить разные точечные оценки. Необходимо иметь критерии сравнения оценок, для суждения об их качестве. Оценка как функция случайных результатов наблюдений
сама является случайной величиной. Значения найденные по разным сериям наблюдений, могут отличаться от истинного значения характеристики в ту или другую сторону. Естественно потребовать, чтобы оценка систематически не завышала и не занижала оцениваемое значение, а с ростом числа наблюдений становилась более точной. Формализация названных требований приводит к следующим понятиям.
Определение. Оценка называется несмещенной, если ее математическое ожидание равно оцениваемой величине: В противном случае оценку называют смещенной.
Определение. Оценка называется состоятельной, если при увеличении числа наблюдений она сходится по вероятности к оцениваемой величине, т.е. для любого сколь угодно малого
Если известно, что оценка несмещенная, то для ее состоятельности достаточно, чтобы
Последнее условие удобно для проверки. В качестве меры разброса значений оценки относительно можно рассматривать величину Из двух оценок предпочтительней та, для которой эта величина меньше. Если оценка имеет наименьшую меру разброса среди всех оценок характеристики, построенных по наблюдениям, то оценку называют эффективной.