Файл: Генетические алгоритмы.ppt

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 09.01.2024

Просмотров: 78

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

et al., 1993] в 1991 году и экспериментально проверена в области цифровых схем.
В дальнейшем, предложенные методы были развиты и доработаны, и получили применение во многих автоматизированных системах проектирования аппаратуры. Использование генетических алгоритмов (ГА) [Курейчик 2004 и др.]
как механизма для автоматического проектирования схем на реконфигурируемых платформах [Blondet et al., 2003], получило название эволюционные аппаратные средства (Evolvable Hardware) [Higuchi et al., 1993], [Sakanashi et al., 1999], которое также используется синонимом для несколько общего направления, известного как эволюционная электроника (Evolutionary Electronics) [Zebulumetal., 2002].
Для автономных решений и задач, связанных с построением эволюционных
аппаратных средств, программная реализация ГА является неприемлемой по целому ряду критериев. Сам факт автономности исключает наличие возможности использования программных решений, выполняемых на ПК или кластерным методом. С другой стороны, автономные системы, как правило, функционируют в режиме реального времени, что накладывает ряд требований на временные характеристики используемых алгоритмов, в связи с чем, вопрос использования программных моделей перестает быть актуальным.


Общее повышение быстродействия


Compact Genetic Algorithm


Параметры


Время


Программная реализация


200 MГц, Ultra Sparc 2


2:30 мин.


Аппаратная реализация


20 MГц, FPGA


0.15 сек


Увеличение быстродействия


1 000 раз


Univariate Marginal
Distributiona Algorithm (UMDA)


Параметры


Время


Программная реализация


540 MГц, P3


23 сек


Аппаратная реализация


125 MГц, FPGA


84 мк.сек.


Увеличение быстродействия


27 380 раз