Файл: Общая информация о дуговой сталеплавильной печи.docx

ВУЗ: Не указан

Категория: Дипломная работа

Дисциплина: Не указана

Добавлен: 09.01.2024

Просмотров: 183

Скачиваний: 4

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Общий расход руды составляет 3-6,5% от массы металла. С тем, чтобы предотвратить сильное охлаждение металла, единовременная порция руды не должна быть более 0,5-1%.

В течение всего окислительного периода идет дефосфорация металла по реакции:



Для успешного протекания той реакции необходимы высокие основность шлака и концентрация окислов железа в нем, а также пониженная температура. Эти условия создаются при совместном введении в печь извести и руды.

Из-за высокого содержания окислов железа в шлаках окислительного периода условия для протекания реакции десульфурации являются неблагоприятными, и десульфурация получает ограниченное развитие: за все время плавления и окислительного периода в шлак удаляется до 30-40% серы, содержащейся в шихте.

При кипении вместе с пузырьками СО из металла удаляются водород и азот. Этот процесс имеет большое значение для повышения качества электростали, поскольку в электропечи в зоне электрических дуг идет интенсивное насыщение металла азотом и водородом. В связи с этим электросталь обычно содержит азота больше, чем мартеновская и кислородно-конвертерная сталь.

Шлак в конце окислительного периода имеет примерно следующий состав, %: 35-50 CaO; 10-20 SiO2; 4-12 MnO; 6-15 MgO; 3-7 Al2O3; 6-30 FeO; 2-6 Fe2O3; 0,4-1,5 P2O5. содержание окислов железа в шлак зависит от содержания углерода в выплавляемой марке стали; верхний предел характерен для низкоуглеродистых сталей, нижний – для высокоуглеродистых.

Окислительный период заканчивается тогда, когда углерод окисляется до нижнего предела его содержания в выплавляемой марке стали, а содержание фосфора снижено до 0,010-0,015%. Период заканчивают сливом окислительного шлака. Полное скачивание окислительного шлака необходимо, чтобы содержащийся в нем фосфор не перешел обратно в металл во время восстановительного периода.

Восстановительный период

Задачами восстановительного периода являются:

а) раскисление металла;

б) удаление серы;

в) доведение химического состава стали до заданного;

г) корректировка температуры.

Все эти задачи решаются параллельно в течение всего восстановительного периода; раскисление металла производят одновременно осаждающим и диффузионным методами.

После удаления окислительного шлака в печь присаживают ферромарганец в количестве, необходимом для обеспечения содержания марганца в металле на его нижнем пределе для выплавляемой стали, а также ферросилиций из расчета введения в металл 0,10-0,15% кремния и алюминий в количестве 0,03-0,1%. Эти добавки вводят для обеспечения осаждающего раскисления металла.


Далее наводят шлак, вводя в печь известь, плавиковый шпат и шамотный бой. Через 10-15 мин. шлаковая смесь расплавляется, и после образования жидкоподвижного шлака приступают к диффузионному раскислению. Вначале, в течение 15-20 мин. раскисление ведут смесью, состоящей из извести, плавикового шпата и кокса в соотношении 8:2:1, иногда присаживают один кокс. Далее начинают раскисление молотым 45 или 75%-ным ферросилицием, который вводят в состав раскислительной смеси, содержащей известь, плавиковый шпат, кокс и ферросилиций в соотношении 4:1:1:1, содержание в этой смеси уменьшают. На некоторых марках стали в конце восстановительного периода в состав раскислительной смеси вводят более сильные раскислители – молотый силикокальций и порошкообразный алюминий, а при выплавке ряда низкоуглеродистых сталей диффузионное раскисление ведут без введения кокса в состав раскислительных смесей.

Суть диффузионного раскисления, протекающего в течение всего периода, заключается в следующем. Так как раскисляющие вещества применяют в порошкообразном виде, плотность их невелика, и они очень медленно опускаются через слой шлака. В шлаке протекают следующие реакции раскисления:

(FeO) + C = Fe + CO; 2·(FeO) + Si = 2·Fe + (SiO2) и т.д.,

в результате содержание FeO в шлаке уменьшается и в соответствии с законом распределения (FeO)/[FeO] = const кислород (в виде FeO) начинает путем диффузии переходить из металла в шлак (диффузионное раскисление). Преимущество диффузионного раскисления заключается в том, что поскольку реакции раскисления идут в шлаке, выплавляемая сталь не загрязняется продуктами раскисления – образующимися окислами. Это способствует получению стали с пониженным содержанием неметаллических включений.

По мере диффузионного раскисления постепенно уменьшается содержание FeO в шлаке и пробы застывшего шлака светлеют, а затем становятся почти белыми. Белый шлак конца восстановительного периода электроплавки имеет следующий состав, %: 53-60 CaO; 15-25 SiO2; 7-15 MgO; 5-8 Al2O3; 5-10 CaF2; 0,8-1,5 CaS; < 0,5 FeO; < 0,5 MnO.

Во время восстановительного периода успешно идет десульфурация, поскольку условия для её протекания более благоприятные, чем в других сталеплавильных агрегатах. Хорошая десульфурация объясняется высокой основностью шлака восстановительного периода (CaO/SiO2 = 2,7-3,3) и низким (< 0,5 %) содержанием FeO в шлаке, обеспечивающим сдвиг равновесия реакции десульфурации [FeS] + (CaO) = (CaS) + (FeO) вправо (в сторону более полного перехода серы в шлак). Коэффициент распределения серы между шлаком и металлом (S)/[S] в восстановительный период электроплавки составляет 20-50 и может доходить до 60 в электропечи с основной футеровкой можно удалить серу до тысячных долей процента.



Для улучшения перемешивания шлака и металла и интенсификации медленно идущих процессов перехода в шлак серы, кислорода и неметаллических включений в восстановительный период рекомендуется применять электромагнитное перемешивание, особенно на большегрузных печах, где удельная поверхность контакта металл-шлак значительно меньше, чем в печах малой емкости.

Длительность восстановительного периода составляет 40-100 мин. За 10-20 мин. до выпуска проводят корректировку содержания кремния в металле, вводя в печь кусковой ферросилиций. Для конечного раскисления за 2-3 мин. до выпуска в металл присаживают 0,4-1,0 кг алюминия на 1 т стали. Выпуск стали из печи в ковш производят совместно со шлаком. Интенсивное перемешивание металла со шлаком в ковше обеспечивает дополнительное рафинирование – из металла в белый шлак переходит сера и неметаллические включения.

Порядок легирования

При выплавке легированных сталей в дуговых печах порядок легирования зависит от сродства легирующих элементов к кислороду. Элементы, обладающие меньшим сродством к кислороду, чем железо (никель, молибден) во время плавки не окисляются и их вводят в начальные периоды плавки – никель в завалку, а молибден в конце плавления или в начале окислительного периода.

Хром и марганец обладают большим сродством к кислороду, чем железо. Поэтому металл легируют хромом и марганцем после слива окислительного шлака в начале восстановительного периода.

Вольфрам обладает большим сродством к кислороду, чем железо и он может окисляться и его обычного вводят в начале восстановительного периода. Особенность легирования вольфрамом заключается в том, что из-за высокой температуры плавления он растворяется медленно и для корректировки состава ферровольфрам можно присаживать в ванну не позднее, чем за 30 до выпуска.

Кремний, ванадий и особенно титан, и алюминий обладают большим сродством к кислороду и легко окисляются. Легирование стали феррованадием производят за 15-35 мин. до выпуска, ферросилиций – за 10-20 мин. до выпуска. Ферротитан вводят в печь за 5-15 мин. до выпуска, либо в ковш. Алюминий вводят за 2-3 мин. до выпуска в ковш.

Глава 2 Определение геометрических параметров дуговой сталеплавильной печи


2.1 Расчет основных геометрических параметров

Основными геометрическими параметрами ДСП являются:

1) - глубина ванны по зеркалу жидкого металла;

2) - глубина ванны до откосов печи;

3) - высота плавильного пространства;

4) - диаметр ванны по зеркалу жидкого металла;

5) - диаметр ванны на уровне порога рабочего окна;

6) - внутренний диаметр кожуха печи;

7) - диаметр ванны на уровне откосов.

Наиболее распространенной является сфероконическая ванна с углом между образующей и осью конуса, равным 45º.

Объем ванны до откосов
(2.1)

где - объём металла; - объём шлака; - дополнительный объём.

Если плотность жидкого металла (т/м3), а емкость печи М (т), то
(2.2)

Номинальную ёмкость печи принимаем равным 3 тонны, а = 7,85 т/м3 – плотность жидкого металла (сталь 30).

Диаметр зеркала жидкого металла определяется из соотношения:
(2.3)
где Dм – диаметр зеркала жидкого металла, м;

Vм – объем жидкого металла, м3;

с – коэффициент, зависящий от отношения диаметра зеркала металла к глубине ванны по металлу.

Обычно коэффициент с определяется по формуле:
, (2.4)
где . Для большинства печей а = 4,5…5,5, причем меньшие значения характерны для небольшой емкости и технологического процесса, не требующего тщательного рафинирования расплавленного металла в печи. При таких соотношениях с теплотехнологической точки зрения будет обеспечено и сравнительно равномерное облучение поверхности ванны от дуг и кладки печи, и более равномерный прогрев металла в объеме ванны.


Принимаем . Тогда:
(2.5)
.
Отсюда, глубина ванны по зеркалу жидкого металла равна:
(2.6)
Глубина сферического сегмента:
(2.7)


Расчетный объём шлака принимаем равным 12% объема жидкого металла:
(2.8)

Высота слоя шлака:
(2.9)

Диаметр зеркала шлака:
(2.10)
Диаметр ванны на уровне порога рабочего окна выбираем с таким расчетом, чтобы уровень порога был на 40 мм выше уровня зеркала шлака:
(2.11)
где - расстояние от зеркала шлака до уровня порога рабочего окна.

Уровень откосов принимаем на 70 мм выше уровня порога рабочего окна, то есть :
(2.12)

Глубина ванны до уровня откосов печи равна:
(2.13)

Зная высоту конической части ванны:
(2.14)
Находим диаметр основания шарового сегмента :
(2.15)

Высоту плавильного пространства от уровня откосов до верха стены на основании данных таблицы 1 принимаем равной: