Файл: Проект Цветомузыкальная установка Содержание.rtf

ВУЗ: Не указан

Категория: Реферат

Дисциплина: Не указана

Добавлен: 09.01.2024

Просмотров: 79

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Двухтактный усилитель нагружен разделительным трансформатором Т1, который служит для гальванической развязки входов всех ТРН.

С обмоток II—V трансформатора Т1 напряжение звуковой частоты поступает на потенциометры R19 — R22, с движков которых через LC-фильтры поступает в ТРН. Потенциометры R19 — R22 служат для установки желаемого соотношения яркостей ламп во всех каналах.

Все тиристорные регуляторы идентичны, поэтому рассмотрим работу только одного из них, например, используемого в канале самых низких частот.

В зависимости от напряжения, детектируемого диодом 1-V1 (см. рис. 3), меняется сопротивление коллекторного перехода транзистора 1-V3, что изменяет время заряда конденсатора 1-С2 в течение одного полупериода напряжения сети. По мере заряда конденсатора 1-С2 напряжение на его обкладках увеличивается. Когда оно достигнет порога открывания аналога однопереходного транзистора 1-V4 и 1-V5, происходит быстрый разряд конденсатора 1-С2 через обмотку I трансформатора 1-Т1 и аналог однопереходного транзистора. Возникающий в обмотках II и III импульс тока открывает тиристоры 1-V6, 1-V7. От того как быстро заряжается конденсатор 1-С2, зависит фаза включения тиристора и, следовательно, эффективное напряжение на лампах накаливания. Таким образом осуществляется плавная регулировка яркости свечения ламп в зависимости от уровня сигнала НЧ.

Канал фона имеет переменный резистор 4-R7, который позволяет установить начальное свечение ламп. Кроме того, вместо фильтра применен транзисторный ключ V15 (см. рис. 1), который открывается при появлении в обмотке V трансформатора Т1 напряжения любой звуковой частоты. Постепенное открытие ключа приводит к закрытию транзистора 4-V2, что приведет к плавному выключению ламп в канале фона.

ЦМУ размещена в корпусе размером 320 X 250 X 90 мм. Монтаж выполнен на двух печатных платах из стеклотекстолита, изображенных на рис. 3 и 4. Тиристоры установлены на радиаторах площадью 250 см2, которые закреплены на основании из текстолита толщиной 4 мм. Трансформаторы 1-Т1—4-Т1 размещены в пространстве между радиаторами. На этом же основании закреплены печатные платы, трансформатор Т2, фильтры НЧ, предохранители.

ЦМУ собрана из доступных деталей. Транзисторы можно заменить любыми из серий МП40 — МП42 и МП36 — МП38, конденсаторы 1-С2 — 4-С2 МБМ 0,5 мкФ на 160 В. Электролитические конденсаторы К50-6 и К50-12, резисторы МЛТ-0,5, кроме 1-R6 — 4-R6, допустимая рассеиваемая мощность которых 2 Вт. Диоды Д9Б можно заменить на Д9 с любым буквенным индексом. Тиристоры КУ202Н можно использовать любые с обратным напряжением не менее 300 В.

1.4 Светодинамическая установка к радиоприёмнику (Е. Пономаренко)

цветомузыкальный гирлянда радиоприемник переключатель

Конструкция широко распространенной радиолы «Ригонда» позволяет после небольшой переделки разместить в ней несложную светодинамическую установку (СДУ). Разумеется, «Ригонда» — не единственный радиоаппарат, в который можно встроить СДУ. При желании экранно-оптическое устройство можно оформить и в отдельном корпусе, но все же во многих случаях наиболее удобной оказывается СДУ, конструктивно объединенная с радиоприемником.

Такая комбинация способствует восприятию музыкальных программ. Использование относительно мощных источников света позволяет наблюдать на экране многокрасочную, непрерывно изменяющуюся светоцветовую картину.

Принципиальная схема устройства показана на рис. 6. Оно сравнительно несложно и не содержит дефицитных деталей. СДУ работает по известному принципу разделения частотного спектра НЧ сигнала на три участка. Каждому участку соответствует отдельный канал СДУ. Схемотехнически каналы совершенно идентичны, поэтому работа устройства рассмотрена на примере одного из них — канала НЧ.


Рисунок 6 Принципиальная схема ЦМУ
Входной сигнал с переменного резистора R1, являющегося общим регулятором яркости для всех каналов, поступает на вход предварительного усилителя НЧ, собранного на транзисторах VI, VI. Транзистор V2 работает усилителем тока. С усилителя НЧ сигнал поступает на регуляторы яркости каналов (R6). Для разделения полосы звуковых частот на каналы в СДУ применены активные RС-фильтры, имеющие более высокую избирательность по сравнению с пассивными, составленными только из резисторов и конденсаторов. В цепь базы транзистора V3 вместе с входным сигналом, снимаемым с резистора R6, через двойной Т-мост поступает сигнал положительной обратной связи с коллектора этого транзистора. Таким образом, наибольшее усиление эта ступень обеспечивает на частоте fрез, определяемой номиналами элементов Т-моста: Rpез = 160 OM, где R — сопротивление резисторов R7 и R8 в килоомах; С — емкость конденсаторов С4 и С5 в нанофарадах; емкость конденсатора СЗ вдвое больше, чем С5.

Рекомендуемые значения частоты Fрез каналов и соответствующая им емкость конденсаторов фильтров указаны на схеме. При налаживании устройства точное значение резонансной частоты устанавливают подборкой резистора R10. Активный фильтр с двойным Т-мостом склонен к самовозбуждению на частоте, близкой к Fрез. Для повышения устойчивости фильтра мост шунтирован резистором R9. Выделенное фильтром напряжение сигнала через разделительный конденсатор С6 поступает на вход узла формирования импульсов управления тринистором. В этот узел входят транзисторы V4 и V5 и накопительный конденсатор С7. При отсутствии сигнала транзистор V4 закрыт и напряжения на конденсаторе С7 недостаточно для открывания однопереходного транзистора V5. При появлении сигнала транзистор V4 открывается и конденсатор С7 начинает заряжаться. В некоторый момент однопереходный транзистор V5 открывается и через управляющий переход тринистора V6 протекает импульс тока, открывающий тринистор. В результате этого через нагрузку — лампы HI, H2 — начинает протекать пульсирующий ток, образующийся в результате выпрямления напряжения сети диодным мостом V7. При увеличении напряжения сигнала на базе транзистора V4 конденсатор С7 заряжается быстрее и частота следования открывающих тринистор импульсов, а следовательно, и среднее значение напряжения на нагрузке увеличиваются — лампы начинают светиться ярче. При уменьшении напряжения сигнала зарядка конденсатора С7 замедляется, частота следования открывающих импульсов уменьшается, в результате яркость ламп падает.



Канал паузной подсветки собран на тринисторе VIS, Нагрузкой которого служат лампы НЗ, Н4. Управляющий электрод тринистора через резистор R15 подключен к аноду тринистора V6 канала НЧ. Когда открыт тринистор V6 и горят лампы низкочастотного канала, тринистор V15 закрыт и лампы канала паузной подсветки не светят. Как только сигнал в канале НЧ уменьшится до нуля, лампы этого канала погаснут, включатся лампы НЗ, Н4 фиолетового цвета.

Это, во-первых, позволяет сдвигать световую картину на экране в область более светлых тонов в моменты, когда отсутствует сигнал в НЧ канале, и, во-вторых, обеспечить подсветку экрана в паузах. Так как в паузах все тринисторы, кроме V15, закрыты, горят только паузные фиолетовые лампы. Емкость конденсатора С8 в канале СЧ следует уменьшить до 100 мкФ, а из канала ВЧ нужно изъять совсем (от емкости этого конденсатора зависит степень инерционности работы канала).

Электронный блок СДУ питается от параметрического стабилизатора R16V10 напряжением 12 В, подключенного к вторичной понижающей обмотке II сетевого трансформатора Т1 через выпрямитель VII — V14.

В установке можно использовать транзисторы КТ315 с любым буквенным индексом. При этом транзисторы V3 во всех каналах должны иметь одинаковый статический коэффициент передачи тока базы. Транзисторы КТ208Д можно заменить на любые из серии КТ361. Тринисторы могут быть КУ202К—КУ202Н. Диодные сборки КЦ405Г можно заменить любыми из серий КЦ402—КЦ405 с буквенными индексами А—Г. В экранном устройстве СДУ применены криптоновые лампы накаливания мощностью 60 Вт на напряжение 220 В.
1.5 Цветомузыкальная установка (В. Синицын)
Предлагаемая цветомузыкальная установка (ЦМУ) является результатом анализа ряда подобных устройств, публиковавшихся в журнале «Радио» и сборниках «В помощь радиолюбителю». В ней реализован число импульсный метод управления тринисторами, а также использована возможность получения каналов светокомпенсации без введения для их реализации специальных электронных устройств. При этом число светокомпенсирующих каналов равно числу основных каналов и, кроме того, получена идеальная обратная зависимость светокомпенсации. В частности, по сравнению с установкой «Ялкын» (см. «В помощь радиолюбителю», М., ДОСААФ, 1976, вып. 52), описываемая ЦМУ при значительно меньшей сложности электронной части обеспечивает больший световой эффект. Как и в «Ялкын», в ней применено сближение динамических диапазонов яркости свечения ламп и уровня звукового сигнала, без введения специальных электронных устройств.


Основные данные ЦМУ: потребляемая мощность 1200 Вт; мощность одного основного канала 300 Вт; мощность одного канала светокомпенсации 100 Вт; уровень входного сигнала 0,3—5 В.

Число импульсный метод управления тринисторами, используемый в описываемой ЦМУ, иллюстрируется графиками, показанными на рис. 1. Для открывания тринистора на его управляющий электрод подают пачку коротких импульсов 3 положительной полярности ;. 1, а), вырабатываемых генератором импульсов, в течение того промежутка времени, пока управляющее напряжение 1 и сравниваемое с ним на входе генератора напряжение, изменяющееся по определенному закону 2 синхронно с частотой сети переменного тока, равны.


График 1. Графики, иллюстрирующие число-импульсный метод управления тринисторами: (а- пачка импульсов положительной полярности: б — иллюстрация эффекта компрессии)


Рис. 7. Принципиальная схема ЦМУ
Задав определенный закон изменения напряжения (2а на рис. 1, б), синхронизированного с частотой сети переменного тока, можно получить эффект компрессии управляющего (1а — д) напряжения.

Наиболее полно условию компрессии удовлетворяет экспоненциальная кривая заряда конденсатора.

Принципиальная схема ЦМУ показана на рис. 7. Сигнал звуковой частоты через регулятор уровня (потенциометр R1) поступают на вход блока фильтров звуковых частот (Ф1, Ф2, Ф3) для разделения на три частотных канала. Импульсы отрицательного напряжения, выделенные диодами V5—V7 и сглаженные конденсаторами С4—С6, через резисторы R4—R6 поступают на базы транзисторов V9—VII. Эти транзисторы выполняют роль регулируемых резисторов, определяющих момент срабатывания устройств сравнения в соответствующих ячейках блока управления тринисторами.

Каждая из ячеек блока управления тринисторами, например изображенная на схеме БУТ1, состоит из блокинг-генератора, собранного на трансформаторе 7Y и транзисторе V17, и устройства сравнения на диодах V12, V13, которое управляет обратной связью блокинг-генератора. На диод V13 синхронно с частотой сети переменного тока подается напряжение, изменяющееся по экспоненциальному закону, формируемое блоком генератора пилообразного напряжения (ГПН), Это напряжение сравнивается с напряжением на диоде V12, которое зависит от введенного сопротивления подстроечного резистора R10 и сопротивления участка коллектор-эмиттер транзистора V9 блока фильтров. В момент равенства обоих напряжений происходит переключение диодов- V13 открывается, a V12 закрывается. Таким образом цепь обмотки 116 положительной обратной связи оказывается замкнутой, а цепь обмотки Па отрицательной обратной связи — разомкнутой. При этом блокинг-генератор начинает вырабатывать импульсы, которые с обмотки трансформатора Т1 через диод Vlb поступают на управляющий электрод тринистора Vis. Диод V15 ограничивает выброс напряжения на обмотке III трансформатора возникающий при запирании транзистора V17. Начальное свечение ламп устанавливают подстроечным резистором R10.


Генератор пилообразного напряжения является общим для всех ячеек БУТ. Он представляет собой транзисторный коммутатор. Напряжение синхронизирующей обмотки III трансформатора питания Т2, выпрямленное диодами VI—V4, закрывает транзистор V8. При этом напряжение на конденсаторе С7, который заряжается через резистор R8, возрастает по экспоненциальной кривой Постоянная времени процесса заряда С7 определяется сопротивлением резистора R8. В конце каждого полупериода напряжения сети транзистор V8 открывается током, протекающим через резистор R7, при этом конденсатор С7 очень быстро разряжается практически до нуля.

2. Физические основы (ЦМУ)
2.1 Трехкомпонентная теория цветового зрения
Впервые гипотезу о механизме цветового зрения высказал М. В. Ломоносов, который в 1756 г. сформулировал трехкомпонентную (трехцветную) теорию восприятия цветов. Согласно этой теории, в глазу имеются три вида приемников лучистой энергии (колбочек), воспринимающих соответственно красную (длинноволновую), желтую (средневолновую) и голубую (коротковолновую) части видимого спектра.

Подобные гипотезы были также выдвинуты в Англии Томасом Юнгом в 1807 г., в Германии — Гельмгольцем в 1852 г., и за основные цвета были приняты красный, зеленый и синий.

Все наши ощущения есть не что иное, как результат смешения в различных пропорциях этих трех цветов. При одинаково сильном возбуждении трех видов колбочек создается ощущение белого цвета, при равном слабом — серого, а при отсутствии раздражения — черного. При этом глаз воспринимает яркость предметов путем суммирования ощущений, получаемых тремя видами колбочек, а цветность — как отношение этих ощущений.

Трехкомпонентная теория цветового зрения в настоящее время является почти общепринятой. Предполагается, что в каждом виде колбочек содержится соответствующий цветочувствительный пигмент, названный йодопсином, обладающий определенной спектральной чувствительностью (характеристикой поглощения). Химический состав пигментов еще не определен.



Рисунок 8 Шкала спектра электромагнитных волн.
На рисунке 8 выделены цвета, называемые главными. Границы здесь довольно условные, так как каждый цвет непрерывно переходит в следующий, образуя множество оттенков. Число воспринимаемых глазом оттенков (спектральных цветов) очень велико и трудно поддаётся точному учету.