Файл: Урок геометрии в 8м классе по теме "Тригонометрические функции острого угла прямоугольного треугольника".docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 09.01.2024
Просмотров: 46
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
BC 3 1
sin A = —— = — = —
AB 6 2
3) Теперь вычислим cos B. Мы знаем, что косинус равен отношению прилежащего катета к гипотенузе. Для угла В прилежащим катетом является все та же сторона ВС. Это значит, что нам снова надо разделить ВС на АВ – то есть совершить те же действия, что и при вычислении синуса угла А:
BC 3 1
cos B = —— = — = —
AB 6 2
В итоге получается:
sin A = cos B = 1/2.
Или:
sin 30º = cos 60º = 1/2.
Из этого следует, что в прямоугольном треугольнике синус одного острого угла равен косинусу другого острого угла – и наоборот.
2
. Значения тригонометрических функций углов в 30°, 45° и 60°.
Рассмотрим прямоугольный треугольник с острыми углами в 30° и 60° и меньшим катетом, равным 1 (рисунок 2):
По свойству прямоугольного треугольника с углом в 30°, AB = 2. Катет AC найдем по теореме Пифагора: . Теперь, зная все стороны треугольника ABC, найдем тригонометрические функции углов в 30° и 60°:
; ;
; .
Т
еперь рассмотрим равнобедренный прямоугольный треугольник с катетом, равным 1 (рисунок 3). Оба его острых угла равны по 45°. Найдем гипотенузу по теореме Пифагора: . По определению тригонометрических функций острого угла, , .
Оформим найденные значения тригонометрических функций углов в виде таблицы:
| sin | cos | tg | ctg |
30° | | | | |
45° | | | 1 | 1 |
60° | | | | |
Домашнее задание: