Файл: Лабораторная работа п 3 по дисциплине Автоматика и телемеханика на перегонах.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 10.01.2024
Просмотров: 130
Скачиваний: 4
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
свою очередь приводит к снижению напряжения на входе путевого приемника. Расстояние от точки подключения аппаратуры к рельсовой линии до места нахождения колесной пары, вызывающей обесточивание путевого реле, включенного на выходе путевого приемника, называется зоной дополнительного шунтирования Lш. На рис. 8 показана схема расположения зон дополнительного шунтирования тональной рельсовой цепи. В зависимости от направления движения одна из них называется зоной дополнительного шунтирования по входу (по приближению), а вторая — зоной дополнительного шунтирования по выходу (по удалению).
Длина зоны дополнительного шунтирования зависит от многих факторов: частоты сигнального тока, коэффициента перегрузки на входе путевого приемника, сопротивления изоляции балласта и др. Как правило, длина Lш составляет примерно 10 % от длины самой рельсовой цепи. Длина зоны дополнительного шунтирования не может быть нулевой или отрицательной, так как рельсовая цепь должна давать занятость при наложении типового нормативного шунта 0,06 Ом в точке подключения аппаратуры (шунтовой режим), что равносильно наложению шунта с нулевым сопротивлением (поездной шунт) на расстоянии 10—15 м от точки подключения аппаратуры при частоте сигнального тока ТРЦ в диапазоне 400—800 Гц. Иногда с целью исключить зону дополнительного шунтирования или ограничить область растекания сигнального тока АЛС на границе ТРЦ устанавливаются изолирующие стыки.
Рис. 8 Схема расположения зон дополнительного шунтирования тональной рельсовой цепи
При необходимости на участках, оборудуемых устройствами ТРЦ с сокращенной зоной дополнительного шунтирования, применяют высокочастотные ТРЦ с несущими частотами в диапазоне 4,5—5,5 кГц. Сокращенная зона дополнительного шунтирования достигается за счет более высокого сопротивления рельсовой линии на высоких частотах. Эти рельсовые цепи получили индекс ТРЦ4, а рельсовые цепи с несущими частотами 420—780 Гц, разработанные раньше ТРЦ4, имеют индекс ТРЦЗ.
В процессе развития и совершенствования ТРЦ, а также для разных случаев применения было создано 4 типа аппаратуры ТРЦ. Имея общие принципы построения и работы, они различаются областью применения, технической реализацией аппаратуры и ее характеристиками. На рис. 9 представлена обобщенная структурная схема ТРЦ 2. Передающая аппаратура первого и второго поколений содержала генератор Г амплитудно-модулированных сигналов, усилитель У, путевой трансформатор ПТ для настройки напряжения питания ТРЦ в зависимости от ее длины и величины минимального удельного сопротивления балласта, фильтр питающего конца Ф. В последующем в рельсовых цепях ТРЦ3 и ТРЦ4 блоки Г, У, Ф и ПТ были объединены в один блок генератора, а фильтры стали выполнять новые функции.
Рис. 9 Обобщенная структурная схема ТРЦ 2
На приемном конце включен приемник – приемник Пр1 рельсовой цепи 5П, настроенный на частоту генератора Г, на выходе приемника включено путевое реле 5П, фиксирующее состояния соответствующей рельсовой цепи.
Генераторы и фильтры настраиваются на конкретную частоту при помощи внешних перемычек. Это позволяет уменьшить номенклатуру аппаратуры, что выгодно как с точки зрения производства (уменьшается разнотипность изделий), так и с точки зрения эксплуатации (уменьшается количество запасных блоков и повышается их универсальность). Приемники выпускаются индивидуально для каждой комбинации несущей и модулирующей частот.
Резистор R3 играет роль балластного сопротивления и обеспечивает требуемое входное сопротивление по концам рельсовой линии. Это регулируемый резистор сопротивлением 400 Ом; его величину выбирают в зависимости от длины соединительного кабеля.
Схема ТРЦ предусматривает возможность передачи сигналов АЛС числового и частотного кодов. Включение кодовых сигналов в рельсовую линию производится по существующим жилам кабеля передающего и приемного концов ТРЦ. Конденсаторы С являются элементами фильтра передающих устройств АЛС.
Устройства согласования и защиты УСЗ размещаются в путевых ящиках и решают следующие задачи: согласование сопротивления соединительного кабеля и аппаратуры с сопротивлением рельсовой линии, защита аппаратуры ТРЦ от грозового разряда (при автономной тяге поездов) или от коммутационных перенапряжений в контактной сети, защита от асимметрии обратного тягового тока (при электрической тяге). К устройствам защиты можно отнести и дроссель-трансформаторы, устанавливаемые при электрической тяге для выравнивания обратных тяговых токов в рельсовых нитях (для устранения асимметрии).
В настоящее время применяются тональные рельсовые цепи двух типов - ТРЦЗ и ТРЦ4. Схема ТРЦ3 на рис. 10. В ТРЦ3 используются несущие частоты 420, 480, 580, 720, 780 ГЦ, а в рельсовых цепях ТРЦ4 используются несущие частоты 4545; 5000; 5555 Гц, в обоих типах ТРЦ используются частоты модуляции 8 и 12 Гц. В состав основной аппаратуры тональных рельсовых цепей ТРЦЗ входят: путевой генератор ГПЗ; путевой фильтр ФПМ; путевой приемник ПП1. Уравнивающий трансформатор УТЗ применяется в тех случаях, когда напряжение на входах путевых приемников одной рельсовой цепи отличается более чем на 20% .
Рис. 10 Схема ТРЦ3
Путевой генератор ГПЗ предназначен для формирования и усиления амплитудно-модулированного сигнала для работы ТРЦ.
Путевой фильтр ФПМ обеспечивает защиту выходных цепей генератора ГПЗ от влияния токов локомотивной сигнализации, тягового тока и атмосферных помех и формирует требуемое по условиям работы рельсовой цепи обратное входное сопротивление питающего конца. Фильтр служит также для гальванического разделения выходной цепи генератора от кабельной линии и получения на нем требуемых напряжений при относительно низких выходных напряжениях генератора.
Путевой приемник ПП1 предназначен для приема и дешифрации сигналов ТРЦ, поступающих из рельсовой линии, и, в соответствии с уровнем принятого сигнала, формирования выходного напряжения на путевом реле. Уравнивающий трансформатор УТЗ предназначен для выравнивания напряжений на входе путевых приемников, питающихся от одного путевого генератора.
Генератор ГПЗ и фильтр ФПМ представляют собой конструкцию, собранную в корпусе реле НШ с использованием его колодки в качестве несущей части блока.
Блок путевого генератора имеет две разновидности: ГПЗ-8, 9, 11 и ГПЗ-11, 14, 15. Аналогичные разновидности имеет блок путевого фильтра (ФПМ-8, 9, 11 и ФПМ-11, 14, 15). Номера 8, 9,11, 14, 15 в обозначении генераторов и фильтров соответствуют несущим частотам 420,480, 580,720,780 Гц. Таким образом, первая разновидность генераторов и фильтров предназначена для формирования и передачи сигналов с несущими частотами 420,480 и 580 Гц, а вторая — с частотами 580, 720, 780 Гц.
Питание генератора осуществляется от сети переменного тока частотой 50 Гц напряжением 35 В, которое подается на выводы 41-43 блока.
Рис. 11 Структурная схема путевого генератора
Из этого напряжения внутри генератора путем ограничения, выпрямления и сглаживания пульсаций формируются напряжения постоянного тока для питания задающих цепей генератора, предварительного и оконечного усилителей. Структурная схема путевого генератора представлена на рис. 11.
Задающий каскад путевого генератора (формирователь сигнала)
F выполнен на базе микросборки или БИС и служит для формирования сигнала ТРЦ с заданной несущей и модулирующей частотой. Настройка на соответствующую несущую и модулирующую частоту сигнала осуществляется внешними перемычками на штепсельной розетке блока.
Сигнал с формирователя F поступает на предварительный усилитель и фильтр. Предварительный усилитель осуществляет усиление сигнала в зависимости от уровня, выставляемого с помощью переменного резистора, ручка которого со стопорным устройством выведена на переднюю панель блока путевого генератора. Фильтр предварительного каскада предназначен для сглаживания прямоугольной формы сигнала и его ослабления в случае отличия несущей частоты от заданной.
С предварительного усилителя после фильтра сигнал поступает на оконечный усилитель, представляющий собой эмиттерный повторитель. Уровень сигнала, поступающего на выход путевого генератора (выводы 2-52) составляет 1—6 В переменного тока.
На передней панели блока имеется светодиодная индикация работоспособности блока в виде двух светодиодов. Ровное свечение одного из них свидетельствует о наличии питания, а мигающее свечение другого светодиода указывает на нормальную работу формирователя F и предварительного усилителя путевого генератора.
Путевой приемник ПП1 представляет собой конструкцию, собранную в корпусе реле ДСШ с использованием его колодки в качестве несущей части блока. Блок путевого приемника имеет 10 разновидностей, отличающихся приемом сигналов с различной несущей частотой и частотой модуляции. Он может иметь следующие обозначения: ПП1-8/8, ПП1-8/12, ПП1-9/8, ПП1-9/12, ПП1-11/8, ПП1-11/12, ПП1-14/8, ПШ-14/12, ПШ-15/8, ПП1-15/12. Первая цифра в обозначении приемников указывает номер принимаемой несущей частоты, а вторая — частоту модуляции (8 или 12 Гц). Напряжение питания 17,5 В переменного тока частотой 50 Гц подается на выводы 21-22 путевого приемника. Из этого напряжения путем выпрямления, ограничения и сглаживания пульсаций формируются напряжения постоянного тока для питания входных каскадов усиления, порогового устройства и выходных каскадов.
Структурная схема путевого приемника представлена на рис. 12. Приемник содержит следующие функциональные узлы: входной фильтр, демодулятор, амплитудный ограничитель, первый фильтр частоты модуляции fм, пороговое устройство,
выходной усилитель, второй фильтр частоты модуляции fм и узел питания.
Входной фильтр предназначен для выделения сигнала с заданной несущей частотой и подавления сигналов РЦ с другими несущими частотами, а также сигналов АЛС и гармоник тягового тока. Полоса пропускания входного фильтра не менее 24 Гц. Его затухание по соседнему каналу (для фильтра с резонансной частотой 420 Гц измеряется на частоте 480 Гц и наоборот) не менее 38 дБ. Входное сопротивление фильтра (оно же входное сопротивление приемника — выводы 11-43) находится в пределах 120—160 Ом и измеряется на средней частоте полосы пропускания. Средняя частота полосы пропускания входного фильтра может отличаться от заданной несущей частоты не более чем на ±2 Гц.
Защита входного фильтра от перенапряжений вследствие грозовых разрядов или влияния тягового тока осуществляется ограничительными диодами (или стабилитронами) на входе путевого приемника.
С выхода входного фильтра амплитудно-модулированный сигнал поступает на демодулятор, на котором выделяется сигнал с частотой модуляции.
После детектора сигнал поступает на амплитудный ограничитель, не позволяющий выходному сигналу превысить уровень в 1,5—2 раза выше чувствительности. Наличие амплитудного ограничителя позволяет обеспечить надежное разделение частот модуляции 8 и 12 Гц с помощью первого фильтра модулирующей частоты, выполненного на LC-контуре.
Выходной сигнал фильтра поступает на вход порогового элемента (симметричного триггера) с высоким коэффициентом возврата. Добротность первого фильтра модулирующей частоты, настроенного на 8 или 12 Гц, равна примерно шести. При расположении этого фильтра перед пороговым устройством с высоким коэффициентом возврата (не менее 0,9) такой добротности вполне достаточно, чтобы обеспечить снижение сигнала на входе триггера ниже порога его срабатывания при поступлении на вход приемника сигнала с частотой модуляции, не соответствующей заданной. Для любых напряжений сигнала на входе приемника такое надежное разделение частот модуляции возможно лишь благодаря амплитудному ограничителю на входе первого фильтра модулирующей частоты.
Длина зоны дополнительного шунтирования зависит от многих факторов: частоты сигнального тока, коэффициента перегрузки на входе путевого приемника, сопротивления изоляции балласта и др. Как правило, длина Lш составляет примерно 10 % от длины самой рельсовой цепи. Длина зоны дополнительного шунтирования не может быть нулевой или отрицательной, так как рельсовая цепь должна давать занятость при наложении типового нормативного шунта 0,06 Ом в точке подключения аппаратуры (шунтовой режим), что равносильно наложению шунта с нулевым сопротивлением (поездной шунт) на расстоянии 10—15 м от точки подключения аппаратуры при частоте сигнального тока ТРЦ в диапазоне 400—800 Гц. Иногда с целью исключить зону дополнительного шунтирования или ограничить область растекания сигнального тока АЛС на границе ТРЦ устанавливаются изолирующие стыки.
Рис. 8 Схема расположения зон дополнительного шунтирования тональной рельсовой цепи
При необходимости на участках, оборудуемых устройствами ТРЦ с сокращенной зоной дополнительного шунтирования, применяют высокочастотные ТРЦ с несущими частотами в диапазоне 4,5—5,5 кГц. Сокращенная зона дополнительного шунтирования достигается за счет более высокого сопротивления рельсовой линии на высоких частотах. Эти рельсовые цепи получили индекс ТРЦ4, а рельсовые цепи с несущими частотами 420—780 Гц, разработанные раньше ТРЦ4, имеют индекс ТРЦЗ.
-
Обобщенная схема тональной рельсовой цепи
В процессе развития и совершенствования ТРЦ, а также для разных случаев применения было создано 4 типа аппаратуры ТРЦ. Имея общие принципы построения и работы, они различаются областью применения, технической реализацией аппаратуры и ее характеристиками. На рис. 9 представлена обобщенная структурная схема ТРЦ 2. Передающая аппаратура первого и второго поколений содержала генератор Г амплитудно-модулированных сигналов, усилитель У, путевой трансформатор ПТ для настройки напряжения питания ТРЦ в зависимости от ее длины и величины минимального удельного сопротивления балласта, фильтр питающего конца Ф. В последующем в рельсовых цепях ТРЦ3 и ТРЦ4 блоки Г, У, Ф и ПТ были объединены в один блок генератора, а фильтры стали выполнять новые функции.
Рис. 9 Обобщенная структурная схема ТРЦ 2
На приемном конце включен приемник – приемник Пр1 рельсовой цепи 5П, настроенный на частоту генератора Г, на выходе приемника включено путевое реле 5П, фиксирующее состояния соответствующей рельсовой цепи.
Генераторы и фильтры настраиваются на конкретную частоту при помощи внешних перемычек. Это позволяет уменьшить номенклатуру аппаратуры, что выгодно как с точки зрения производства (уменьшается разнотипность изделий), так и с точки зрения эксплуатации (уменьшается количество запасных блоков и повышается их универсальность). Приемники выпускаются индивидуально для каждой комбинации несущей и модулирующей частот.
Резистор R3 играет роль балластного сопротивления и обеспечивает требуемое входное сопротивление по концам рельсовой линии. Это регулируемый резистор сопротивлением 400 Ом; его величину выбирают в зависимости от длины соединительного кабеля.
Схема ТРЦ предусматривает возможность передачи сигналов АЛС числового и частотного кодов. Включение кодовых сигналов в рельсовую линию производится по существующим жилам кабеля передающего и приемного концов ТРЦ. Конденсаторы С являются элементами фильтра передающих устройств АЛС.
Устройства согласования и защиты УСЗ размещаются в путевых ящиках и решают следующие задачи: согласование сопротивления соединительного кабеля и аппаратуры с сопротивлением рельсовой линии, защита аппаратуры ТРЦ от грозового разряда (при автономной тяге поездов) или от коммутационных перенапряжений в контактной сети, защита от асимметрии обратного тягового тока (при электрической тяге). К устройствам защиты можно отнести и дроссель-трансформаторы, устанавливаемые при электрической тяге для выравнивания обратных тяговых токов в рельсовых нитях (для устранения асимметрии).
-
Аппаратура тональных рельсовых цепей
В настоящее время применяются тональные рельсовые цепи двух типов - ТРЦЗ и ТРЦ4. Схема ТРЦ3 на рис. 10. В ТРЦ3 используются несущие частоты 420, 480, 580, 720, 780 ГЦ, а в рельсовых цепях ТРЦ4 используются несущие частоты 4545; 5000; 5555 Гц, в обоих типах ТРЦ используются частоты модуляции 8 и 12 Гц. В состав основной аппаратуры тональных рельсовых цепей ТРЦЗ входят: путевой генератор ГПЗ; путевой фильтр ФПМ; путевой приемник ПП1. Уравнивающий трансформатор УТЗ применяется в тех случаях, когда напряжение на входах путевых приемников одной рельсовой цепи отличается более чем на 20% .
Рис. 10 Схема ТРЦ3
Путевой генератор ГПЗ предназначен для формирования и усиления амплитудно-модулированного сигнала для работы ТРЦ.
Путевой фильтр ФПМ обеспечивает защиту выходных цепей генератора ГПЗ от влияния токов локомотивной сигнализации, тягового тока и атмосферных помех и формирует требуемое по условиям работы рельсовой цепи обратное входное сопротивление питающего конца. Фильтр служит также для гальванического разделения выходной цепи генератора от кабельной линии и получения на нем требуемых напряжений при относительно низких выходных напряжениях генератора.
Путевой приемник ПП1 предназначен для приема и дешифрации сигналов ТРЦ, поступающих из рельсовой линии, и, в соответствии с уровнем принятого сигнала, формирования выходного напряжения на путевом реле. Уравнивающий трансформатор УТЗ предназначен для выравнивания напряжений на входе путевых приемников, питающихся от одного путевого генератора.
Генератор ГПЗ и фильтр ФПМ представляют собой конструкцию, собранную в корпусе реле НШ с использованием его колодки в качестве несущей части блока.
Блок путевого генератора имеет две разновидности: ГПЗ-8, 9, 11 и ГПЗ-11, 14, 15. Аналогичные разновидности имеет блок путевого фильтра (ФПМ-8, 9, 11 и ФПМ-11, 14, 15). Номера 8, 9,11, 14, 15 в обозначении генераторов и фильтров соответствуют несущим частотам 420,480, 580,720,780 Гц. Таким образом, первая разновидность генераторов и фильтров предназначена для формирования и передачи сигналов с несущими частотами 420,480 и 580 Гц, а вторая — с частотами 580, 720, 780 Гц.
Питание генератора осуществляется от сети переменного тока частотой 50 Гц напряжением 35 В, которое подается на выводы 41-43 блока.
Рис. 11 Структурная схема путевого генератора
Из этого напряжения внутри генератора путем ограничения, выпрямления и сглаживания пульсаций формируются напряжения постоянного тока для питания задающих цепей генератора, предварительного и оконечного усилителей. Структурная схема путевого генератора представлена на рис. 11.
Задающий каскад путевого генератора (формирователь сигнала)
F выполнен на базе микросборки или БИС и служит для формирования сигнала ТРЦ с заданной несущей и модулирующей частотой. Настройка на соответствующую несущую и модулирующую частоту сигнала осуществляется внешними перемычками на штепсельной розетке блока.
Сигнал с формирователя F поступает на предварительный усилитель и фильтр. Предварительный усилитель осуществляет усиление сигнала в зависимости от уровня, выставляемого с помощью переменного резистора, ручка которого со стопорным устройством выведена на переднюю панель блока путевого генератора. Фильтр предварительного каскада предназначен для сглаживания прямоугольной формы сигнала и его ослабления в случае отличия несущей частоты от заданной.
С предварительного усилителя после фильтра сигнал поступает на оконечный усилитель, представляющий собой эмиттерный повторитель. Уровень сигнала, поступающего на выход путевого генератора (выводы 2-52) составляет 1—6 В переменного тока.
На передней панели блока имеется светодиодная индикация работоспособности блока в виде двух светодиодов. Ровное свечение одного из них свидетельствует о наличии питания, а мигающее свечение другого светодиода указывает на нормальную работу формирователя F и предварительного усилителя путевого генератора.
Путевой приемник ПП1 представляет собой конструкцию, собранную в корпусе реле ДСШ с использованием его колодки в качестве несущей части блока. Блок путевого приемника имеет 10 разновидностей, отличающихся приемом сигналов с различной несущей частотой и частотой модуляции. Он может иметь следующие обозначения: ПП1-8/8, ПП1-8/12, ПП1-9/8, ПП1-9/12, ПП1-11/8, ПП1-11/12, ПП1-14/8, ПШ-14/12, ПШ-15/8, ПП1-15/12. Первая цифра в обозначении приемников указывает номер принимаемой несущей частоты, а вторая — частоту модуляции (8 или 12 Гц). Напряжение питания 17,5 В переменного тока частотой 50 Гц подается на выводы 21-22 путевого приемника. Из этого напряжения путем выпрямления, ограничения и сглаживания пульсаций формируются напряжения постоянного тока для питания входных каскадов усиления, порогового устройства и выходных каскадов.
Структурная схема путевого приемника представлена на рис. 12. Приемник содержит следующие функциональные узлы: входной фильтр, демодулятор, амплитудный ограничитель, первый фильтр частоты модуляции fм, пороговое устройство,
выходной усилитель, второй фильтр частоты модуляции fм и узел питания.
Входной фильтр предназначен для выделения сигнала с заданной несущей частотой и подавления сигналов РЦ с другими несущими частотами, а также сигналов АЛС и гармоник тягового тока. Полоса пропускания входного фильтра не менее 24 Гц. Его затухание по соседнему каналу (для фильтра с резонансной частотой 420 Гц измеряется на частоте 480 Гц и наоборот) не менее 38 дБ. Входное сопротивление фильтра (оно же входное сопротивление приемника — выводы 11-43) находится в пределах 120—160 Ом и измеряется на средней частоте полосы пропускания. Средняя частота полосы пропускания входного фильтра может отличаться от заданной несущей частоты не более чем на ±2 Гц.
Защита входного фильтра от перенапряжений вследствие грозовых разрядов или влияния тягового тока осуществляется ограничительными диодами (или стабилитронами) на входе путевого приемника.
С выхода входного фильтра амплитудно-модулированный сигнал поступает на демодулятор, на котором выделяется сигнал с частотой модуляции.
После детектора сигнал поступает на амплитудный ограничитель, не позволяющий выходному сигналу превысить уровень в 1,5—2 раза выше чувствительности. Наличие амплитудного ограничителя позволяет обеспечить надежное разделение частот модуляции 8 и 12 Гц с помощью первого фильтра модулирующей частоты, выполненного на LC-контуре.
Выходной сигнал фильтра поступает на вход порогового элемента (симметричного триггера) с высоким коэффициентом возврата. Добротность первого фильтра модулирующей частоты, настроенного на 8 или 12 Гц, равна примерно шести. При расположении этого фильтра перед пороговым устройством с высоким коэффициентом возврата (не менее 0,9) такой добротности вполне достаточно, чтобы обеспечить снижение сигнала на входе триггера ниже порога его срабатывания при поступлении на вход приемника сигнала с частотой модуляции, не соответствующей заданной. Для любых напряжений сигнала на входе приемника такое надежное разделение частот модуляции возможно лишь благодаря амплитудному ограничителю на входе первого фильтра модулирующей частоты.