Файл: Лабораторная работа п 3 по дисциплине Автоматика и телемеханика на перегонах.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 10.01.2024

Просмотров: 130

Скачиваний: 4

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
свою очередь приводит к снижению напряжения на входе путевого приемника. Расстояние от точки подключения аппаратуры к рельсовой линии до места нахождения колесной пары, вызы­вающей обесточивание путевого реле, включенного на выходе путевого приемника, называется зоной дополнительного шунтирования Lш. На рис. 8 показана схема расположения зон допол­нительного шунтирования тональной рельсовой цепи. В зависимости от направления движения одна из них называется зоной дополнительного шунтирования по входу (по приближению), а вторая — зоной дополнительного шунтирования по выходу (по удалению).

Длина зоны дополнительного шунтирования зависит от многих факторов: частоты сигнально­го тока, коэффициента перегрузки на входе путевого приемника, сопротивления изоляции баллас­та и др. Как правило, длина Lш составляет примерно 10 % от длины самой рельсовой цепи. Длина зоны дополнительного шунтирования не может быть нулевой или отрицательной, так как рельсо­вая цепь должна давать занятость при наложении типового нормативного шунта 0,06 Ом в точке подключения аппаратуры (шунтовой режим), что равносильно наложению шунта с нуле­вым сопротивлением (поездной шунт) на расстоянии 10—15 м от точки подключения аппа­ратуры при частоте сигнального тока ТРЦ в диапазоне 400—800 Гц. Иногда с целью исклю­чить зону дополнительного шунтирования или ограничить область растекания сигнального тока АЛС на границе ТРЦ устанавливаются изолирующие стыки.



Рис. 8 Схема расположения зон дополнительного шунтирования тональной рельсовой цепи

При необходимости на участках, оборудуемых устройствами ТРЦ с сокращенной зоной дополнительного шунтирования, применяют высокочастотные ТРЦ с несущими частота­ми в диапазоне 4,5—5,5 кГц. Сокращенная зона дополнительного шунтирования достига­ется за счет более высокого сопротивления рельсовой линии на высоких частотах. Эти рель­совые цепи получили индекс ТРЦ4, а рельсовые цепи с несущими частотами 420—780 Гц, разработанные раньше ТРЦ4, имеют индекс ТРЦЗ.

      1. Обобщенная схема тональной рельсовой цепи

В процессе развития и совершенствования ТРЦ, а также для разных случаев применения было создано 4 типа аппаратуры ТРЦ. Имея общие принципы построения и работы, они различаются областью применения, технической реализацией аппаратуры и ее характеристиками. На рис. 9 представлена обобщенная структурная схема ТРЦ 2. Передающая аппаратура первого и второго поколений содержала генератор Г амплитудно-модулированных сигналов, усилитель У, путевой трансформатор ПТ для настройки напряжения питания ТРЦ в зависимости от ее длины и величины минимального удельного сопротивления балласта, фильтр питающего конца Ф. В последующем в рельсовых цепях ТРЦ3 и ТРЦ4 блоки Г, У, Ф и ПТ были объединены в один блок генератора, а фильтры стали выполнять новые функции.




Рис. 9 Обобщенная структурная схема ТРЦ 2

На приемном конце включен приемник – приемник Пр1 рельсовой цепи 5П, настроенный на частоту генератора Г, на выходе приемника включено путевое реле 5П, фиксирующее состояния соответствующей рельсовой цепи.

Генераторы и фильтры настраиваются на конкретную частоту при помощи внешних перемычек. Это позволяет уменьшить номенклатуру аппаратуры, что выгодно как с точки зрения производства (уменьшается разнотипность изделий), так и с точки зрения эксплуатации (уменьшается количество запасных блоков и повышается их универсальность). Приемники выпускаются индивидуально для каждой комбинации несущей и модулирующей частот.

Резистор R3 играет роль балластного сопротивления и обеспечивает требуемое входное сопротивление по концам рельсовой линии. Это регулируемый резистор сопротивлением 400 Ом; его величину выбирают в зависимости от длины соединительного кабеля.

Схема ТРЦ предусматривает возможность передачи сигналов АЛС числового и частотного кодов. Включение кодовых сигналов в рельсовую линию производится по существующим жилам кабеля передающего и приемного концов ТРЦ. Конденсаторы С являются элементами фильтра передающих устройств АЛС.

Устройства согласования и защиты УСЗ размещаются в путевых ящиках и решают следующие задачи: согласование сопротивления соединительного кабеля и аппаратуры с сопротивлением рельсовой линии, защита аппаратуры ТРЦ от грозового разряда (при автономной тяге поездов) или от коммутационных перенапряжений в контактной сети, защита от асимметрии обратного тягового тока (при электрической тяге). К устройствам защиты можно отнести и дроссель-трансформаторы, устанавливаемые при электрической тяге для выравнивания обратных тяговых токов в рельсовых нитях (для устранения асимметрии).


      1. Аппаратура тональных рельсовых цепей

В настоящее время применяются тональные рельсовые цепи двух типов - ТРЦЗ и ТРЦ4. Схема ТРЦ3 на рис. 10. В ТРЦ3 используются несущие частоты 420, 480, 580, 720, 780 ГЦ, а в рельсовых цепях ТРЦ4 используются несущие частоты 4545; 5000; 5555 Гц, в обоих типах ТРЦ используются частоты модуляции 8 и 12 Гц. В состав основной аппаратуры тональных рельсовых цепей ТРЦЗ входят: путевой генера­тор ГПЗ; путевой фильтр ФПМ; путевой приемник ПП1. Уравнивающий трансформатор УТЗ применяется в тех случаях, когда напряжение на входах путевых приемников одной рельсовой цепи отличается более чем на 20% .





Рис. 10 Схема ТРЦ3

Путевой генератор ГПЗ предназначен для формирования и усиления амплитудно-модулированного сигнала для работы ТРЦ.

Путевой фильтр ФПМ обеспечивает защиту вы­ходных цепей генератора ГПЗ от влияния токов локомотивной сигнализации, тягового тока и атмосферных помех и формирует требуемое по условиям работы рельсовой цепи обратное входное сопротивление питающего конца. Фильтр служит также для гальвани­ческого разделения выходной цепи генератора от кабельной линии и получения на нем требуемых напряжений при относительно низких выходных напряжениях генератора.

Путевой приемник ПП1 предназначен для приема и дешифрации сигналов ТРЦ, поступающих из рельсовой линии, и, в соответствии с уровнем принятого сигнала, формирования выходного напряжения на путевом реле. Уравнивающий трансформатор УТЗ предназначен для выравнива­ния напряжений на входе путевых приемников, питающихся от одного путевого генератора.

Генератор ГПЗ и фильтр ФПМ представляют собой конструкцию, собранную в корпусе реле НШ с использованием его колодки в качестве несущей части блока.

Блок путевого генератора имеет две разновидности: ГПЗ-8, 9, 11 и ГПЗ-11, 14, 15. Ана­логичные разновидности имеет блок путевого фильтра (ФПМ-8, 9, 11 и ФПМ-11, 14, 15). Номера 8, 9,11, 14, 15 в обозначении генераторов и фильтров соответствуют несущим час­тотам 420,480, 580,720,780 Гц. Таким образом, первая разновидность генераторов и филь­тров предназначена для формирования и передачи сигналов с несущими частотами 420,480 и 580 Гц, а вторая — с частотами 580, 720, 780 Гц.

Питание генератора осуществляется от сети переменного тока частотой 50 Гц напряжени­ем 35 В, которое подается на выводы 41-43 блока.



Рис. 11 Структурная схема путевого генератора

Из этого напряжения внутри генератора путем ограничения, выпрямления и сглаживания пульсаций формируются напряжения по­стоянного тока для питания задающих цепей генератора, предварительного и оконечного усилителей. Структурная схема путевого генератора представлена на рис. 11.

Задающий каскад путевого генератора (формирователь сигнала)
F выполнен на базе мик­росборки или БИС и служит для формирования сигнала ТРЦ с заданной несущей и модули­рующей частотой. Настройка на соответствующую несущую и модулирующую частоту сиг­нала осуществляется внешними перемычками на штепсельной розетке блока.

Сигнал с формирователя F поступает на предварительный усилитель и фильтр. Предва­рительный усилитель осуществляет усиление сигнала в зависимости от уровня, выставля­емого с помощью переменного резистора, ручка которого со стопорным устройством вы­ведена на переднюю панель блока путевого генератора. Фильтр предварительного каскада предназначен для сглаживания прямоугольной формы сигнала и его ослабления в случае отличия несущей частоты от заданной.

С предварительного усилителя после фильтра сигнал поступает на оконечный усили­тель, представляющий собой эмиттерный повторитель. Уровень сигнала, поступающего на выход путевого генератора (выводы 2-52) составляет 1—6 В переменного тока.

На передней панели блока имеется светодиодная индикация работоспособности блока в виде двух светодиодов. Ровное свечение одного из них свидетельствует о наличии пита­ния, а мигающее свечение другого светодиода указывает на нормальную работу формиро­вателя F и предварительного усилителя путевого генератора.

Путевой приемник ПП1 представляет собой конструкцию, собранную в корпусе реле ДСШ с использованием его колодки в качестве несущей части блока. Блок путевого приемника имеет 10 разновидностей, отличающихся приемом сигналов с различной несущей частотой и частотой модуляции. Он может иметь следующие обозначения: ПП1-8/8, ПП1-8/12, ПП1-9/8, ПП1-9/12, ПП1-11/8, ПП1-11/12, ПП1-14/8, ПШ-14/12, ПШ-15/8, ПП1-15/12. Первая цифра в обозначении приемников указывает номер принимаемой несущей частоты, а вторая — час­тоту модуляции (8 или 12 Гц). Напряжение питания 17,5 В переменного тока частотой 50 Гц подается на выводы 21-22 путевого приемника. Из этого напряжения путем выпрямления, ограничения и сглаживания пульсаций формируются напряжения постоянного тока для пи­тания входных каскадов усиления, порогового устройства и выходных каскадов.

Структурная схема путевого приемника представлена на рис. 12. Приемник содержит следую­щие функциональные узлы: входной фильтр, демодулятор, амплитудный ограничитель, первый фильтр частоты модуляции fм, пороговое устройство,
выходной усилитель, второй фильтр частоты модуляции fм и узел питания.

Входной фильтр предназначен для выделения сигнала с заданной несущей частотой и по­давления сигналов РЦ с другими несущими частотами, а также сигналов АЛС и гармоник тягового тока. Полоса пропускания входного фильтра не менее 24 Гц. Его затухание по со­седнему каналу (для фильтра с резонансной частотой 420 Гц измеряется на частоте 480 Гц и наоборот) не менее 38 дБ. Входное сопротивление фильтра (оно же входное сопротивление приемника — выводы 11-43) находится в пределах 120—160 Ом и измеряется на средней час­тоте полосы пропускания. Средняя частота полосы пропускания входного фильтра может отличаться от заданной несущей частоты не более чем на ±2 Гц.

Защита входного фильтра от перенапряжений вследствие грозовых разрядов или влияния тя­гового тока осуществляется ограничительными диодами (или стабилитронами) на входе путе­вого приемника.

С выхода входного фильтра амплитудно-модулированный сигнал поступает на демодулятор, на котором выделяется сигнал с частотой модуляции.

После детектора сигнал поступает на амплитудный ограничитель, не позволяющий выходно­му сигналу превысить уровень в 1,5—2 раза выше чувствительности. Наличие амплитудного ограничителя позволяет обеспечить надежное разделение частот модуляции 8 и 12 Гц с помо­щью первого фильтра модулирующей частоты, выполненного на LC-контуре.

Выходной сигнал фильтра поступает на вход порогового элемента (симметричного триггера) с высоким коэффициентом возврата. Добротность первого фильтра модулирующей частоты, настроенного на 8 или 12 Гц, равна примерно шести. При расположении этого фильтра перед пороговым устройством с высоким коэффициентом возврата (не менее 0,9) такой добротности вполне достаточно, чтобы обеспечить снижение сигнала на входе триггера ниже порога его сра­батывания при поступлении на вход приемника сигнала с частотой модуляции, не соответ­ствующей заданной. Для любых напряжений сигнала на входе приемника такое надежное разделение частот модуляции возможно лишь благодаря амплитудному ограничителю на входе первого фильтра модулирующей частоты.