Файл: Реферат ядерное оружие. Примеры его применения, полигоны испытания ядерного оружия по дисциплине Радиационная и химическая защита.docx
Добавлен: 10.01.2024
Просмотров: 45
Скачиваний: 2
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
-
Ядерные взрывные устройства
Существует ряд веществ, способных привести к цепной реакции деления. В ядерном оружии используются уран-235 или плутоний-239. Уран в природе встречается в виде смеси трёх изотопов: 238U (99,2745 % природного урана), 235U (0,72 %) и 234U (0,0055 %). Цепную ядерную реакцию поддерживает только изотоп 235U. Для обеспечения максимальной энергоемкости уранового взрывного устройства (урановой ядерной бомбы) содержание 235U в нём должно быть не менее 80 %. Поэтому при производстве оружейного урана для повышения доли 235U выполняют обогащение урана. Обычно в ядерном оружии используют 235U с обогащением выше 90 %, либо 239Pu с обогащением 94 %. Также были созданы экспериментальные ядерные заряды на базе 233U, но 233U не нашел применения в ядерном оружии, несмотря на меньшую критическую массу урана-233 по сравнению с ураном-235, из-за примеси 232U, продукты распада которого создают жёсткое проникающее излучение для персонала, обслуживающего такое ядерное оружие.
Альтернативой процессу обогащения урана служит создание плутониевых ядерных взрывных устройств на основе изотопа плутоний-239 в качестве основного ядерного взрывчатого вещества. Плутоний не встречается в природе, и этот элемент получают искусственно, облучая нейтронами 238U. Технологически такое облучение осуществляют в ядерных реакторах. После облучения уран с полученным плутонием отправляют на радиохимический завод, где химическим способом извлекают наработанный плутоний. Регулируя параметры облучения в реакторе, добиваются преимущественной наработки нужного изотопа плутония.
-
Термоядерные взрывные устройства
В термоядерном взрывном устройстве высвобождение энергии происходит в процессе сверхбыстрой (взрывной) реакции термоядерного синтеза дейтерия и трития в более тяжёлые элементы. При этом в реакции термоядерного синтеза заключён основной источник энергии взрыва. Основное рабочее вещество большинства современных термоядерных взрывных устройств — дейтерид лития. Подрыв основного боевого заряда — заряда дейтерида лития — выполняется маломощным встроенным ядерным взрывным устройством, выполняющим функцию детонатора (при взрыве ядерного взрывного устройства-детонатора выделяется энергия, более чем достаточная для запуска взрывной термоядерной реакции). Реакции термоядерного синтеза — намного более эффективный источник энергии, и, кроме того, возможно конструктивным усовершенствованием делать термоядерное взрывное устройство сколь угодно мощным, то есть отсутствуют принципиальные физические ограничения мощности термоядерного взрывного устройства.
-
Ядерные взрывные устройства с усилением (бустингом)
Особый подкласс ядерных взрывных устройств (деления) — ядерные устройства с усилением (бустингом). Ядерное оружие с усилением — это заряд деления, мощность взрыва которого увеличивается за счет небольшого количества термоядерных реакций, но это не термоядерная бомба. В усиленном заряде деления нейтроны, образующиеся в результате реакций синтеза, служат в первую очередь для повышения эффективности заряда деления. Существует два типа зарядов деления с усилением (бустированием): с внутренним бустированием (или бустированием ядра), в котором смесь дейтерия и трития впрыскивается в центральную часть ядра заряда, и с внешним бустированием (или бустированием тампера), в котором концентрические оболочки из дейтерида лития 6 и обедненного урана (тампера) наслаиваются снаружи основного заряда деления. Внешний метод бустирования использовался в советской экспериментальной ядерной бомбе РДС-6с («Слойке»), первом частично термоядерном одноступенчатом оружии, и позже, в созданном на его основе, в единственном экземпляре, и испытанном бестритиевом заряде РДС-27. Однако, в дальнейшем оказалось, что такая схема зарядов тупиковая, быстро устарела и больше не использовалась, из-за целого ряда присущих ей недостатков.
Основное физическое отличие ядерного взрывного устройства с термоядерным усилением от термоядерного взрывного устройства в том, что большая часть от общего выделения энергии в таком ядерном взрывном устройстве с усилением приходится на основной заряд делящегося вещества (на реакции деления).
Общей особенностью ядерных взрывных устройств с усилением — является намного большая (на десятки процентов) мощность, чем у ядерного взрывного устройства без такового, за счет большего коэффициента использования делящегося вещества.
-
Другие типы ядерного оружия
Нейтронная бомба — основное поражающее действие которой основано на нейтронном излучении, поражающим живую силу противника, например, защищенную броней танка.
Также теоретически возможно, но не известно о практическом использовании, создание радиологических бомб (грязных бомб), в которых под действием быстрых нейтронов термоядерного синтеза образуются в большом количестве радиоактивные изотопы кобальта, цинка, тантала и др., которые могут на достаточно длительное время заражать значительную территорию противника, см. кобальтовая бомба.
-
Виды ядерных взрывов
Ядерные взрывы могут быть следующих видов:
-
воздушный — в тропосфере; -
высотный — в верхних слоях атмосферы и в ближнем околопланетном космосе; -
космический — в дальнем околопланетном космосе и далее; -
наземный взрыв — у самой земли; -
подземный взрыв (под поверхностью земли); -
надводный (у самой поверхности воды); -
подводный (под водой).
-
Поражающие факторы
При подрыве ядерного боеприпаса происходит ядерный взрыв, поражающими факторами которого являются:
-
ударная волна -
световое излучение -
проникающая радиация -
радиоактивное заражение -
электромагнитный импульс (ЭМИ)
Соотношение мощности воздействия различных поражающих факторов зависит от конкретной физики ядерного взрыва. Например, для термоядерного взрыва характерны более сильные, чем у так называемого атомного взрыва, световое излучение, гамма-лучевой компонент проникающей радиации, но значительно более слабые корпускулярный компонент проникающей радиации и радиоактивное заражение местности.
Люди, непосредственно подвергшиеся воздействию поражающих факторов ядерного взрыва, кроме физических повреждений, которые зачастую смертельны для человека, испытывают мощное психологическое воздействие от ужасающей картины взрыва и разрушений. Электромагнитный импульс (ЭМИ) непосредственного влияния на живые организмы не оказывает, но может нарушить работу электронной аппаратуры (ламповая электроника и фотонная аппаратура сравнительно нечувствительны к воздействию ЭМИ).
-
Классификация ядерных боеприпасов
Все ядерные боеприпасы могут быть разделены на две основные категории:
-
ядерные («атомные») — однофазные или одноступенчатые взрывные устройства, в которых основной выход энергии происходит от ядерной реакции деления тяжёлых ядер (урана-235 или плутония-239) с образованием более лёгких элементов; -
ядерные («атомные») — однофазные или одноступенчатые взрывные устройства с термоядерным усилением (бустингом), которые подразделяются на устройства с внутренним бустированием, и на устройства с внешним бустированием. -
термоядерные («водородные») — двухфазные или двухступенчатые взрывные устройства, в которых последовательно развиваются два физических процесса, локализованных в различных областях пространства: на первой стадии основным источником энергии является реакция деления тяжёлых ядер, а на второй реакции деления и термоядерного синтеза используются в различных пропорциях, в зависимости от типа и настройки боеприпаса. -
термоядерные («водородные») — трехфазные или трехступенчатые взрывные устройства, в которых последовательно развиваются три физических процесса, локализованных в различных областях пространства. В отдельную категорию следует выделить трехступенчатое термоядерное оружие, используемое для создания термоядерных взрывных устройств сверхбольшой мощности (мощностью от нескольких, предположительно, от 2,5—5 мегатонн до десятков мегатонн. Связано это с тем, что 1 ступень деления не может обеспечить достаточное количество энергии рентгеновского излучения, которое необходимо для обеспечения взрыва «больших» термоядерных ступеней. В трехступенчатых устройствах 1 ступень деления (с мощностью взрыва до десятков килотонн), используется для радиационной имплозии 2 («небольшой») термоядерной ступени, (с мощностью взрыва в несколько сотен килотонн), и уже излучение этой 2 термоядерной ступени (вместе с излучением 1 ступени) используется для радиационной имплозии 3 («большой») термоядерной ступени, с мощностью взрыва от 2,5—5 мегатонн до многих десятков мегатонн. Примером трехступенчатого оружия созданного в СССР являлась так называемая «Царь-бомба» (АН-602), в которой 2 небольшие 1 ступени деления (с мощностью взрыва до десятков килотонн), использовались для радиационной имплозии 2 («небольших») термоядерных 2 ступеней, (с мощностью взрыва по 750 килотонн), и уже излучение этих 2 термоядерных ступеней (вместе с излучением 1 ступеней) использовалось для радиационной имплозии 3 («большой») термоядерной ступени, (с мощностью взрыва от 50 мегатонн до 100 мегатонн). В «Царь-бомбе» (АН-602) две первые и две вторые ступени размещались симметрично с 2 сторон от третьей («большой») термоядерной ступени, по так называемой «бифилярной» схеме.
По этому же принципу, который использовали для создания трехфазных или трехступенчатых взрывных устройств, возможно создание термоядерного оружия с еще большим числом ступеней, например, 4 и более ступеней, с мощностью в сотни и тысячи мегатонн (гигатонны), но по целому ряду причин, никакой практической необходимости в этом нет.
Реакция термоядерного синтеза, как правило, развивается внутри делящейся сборки и служит мощным источником дополнительных нейтронов. Только ранние ядерные устройства в 1940-х годах, немногочисленные бомбы пушечной сборки в 1950-х, некоторые ядерные артиллерийские снаряды, а также, возможно, изделия слаборазвитых в плане ядерных технологий государств (ЮАР, Пакистан, КНДР) не используют термоядерный синтез в качестве усилителя мощности ядерного взрыва или главного источника энергии взрыва.
Вторая ступень любого термоядерного взрывного устройства может быть оснащена тампером — отражателем нейтронов. Тампер изготовляется из 238U, который эффективно делится от быстрых нейтронов реакции синтеза. Так достигается многократное увеличение общей мощности взрыва и чудовищный рост количества радиоактивных осадков. После знаменитой книги «Ярче тысячи солнц», написанной Р. Юнгом в 1958 году по «горячим следам» Манхэттенского проекта, такого рода «грязные» термоядерные боеприпасы довольно часто (с подачи Р. Юнга) принято называть FFF (fusion-fission-fusion) или трёхфазными. Однако этот термин не вполне корректен, и его не стоит использовать. Почти все «FFF» относятся к двухфазным и различаются только материалом тампера, который в «чистом» боеприпасе может быть выполнен из свинца, вольфрама и т. д. , а в «грязном» из 238U. По сведениям из расследования шпионских скандалов, тампер в современных малогабаритных и мощных боеприпасах изготовляется из 235U, который эффективно делится от любых (быстрых и медленных) нейтронов реакции синтеза, и позволят значительно увеличить мощность взрыва такого боеприпаса, по сравнению с тампером из 238U. Также тампер 2 ступени может быть изготовлен, кроме 238U, или из обогащенного урана с различной степенью обогащения 235U, или из 239Pu, и различных комбинаций указанных выше материалов.
Исключением являются устройства типа «Слойки» Сахарова, которые следует отнести к однофазным с бустированием, хотя они имеют слоистую структуру взрывного заряда (ядро из плутония — слой дейтерида лития-6 — слой урана-238). В США такое устройство получило название «Alarm Clock» («Часы с будильником»). Схема последовательного чередования реакций деления и синтеза реализована в двухфазных боеприпасах, в которых можно насчитать до 6 слоёв при весьма «умеренной» мощности. Примером служит относительно современная ракетная боеголовка W88, в которой первая секция (primary) содержит два слоя, вторая секция (secondary) имеет три слоя, и ещё одним слоем является общая для двух секций оболочка из урана-238 (см. рисунок).
Иногда в отдельную категорию выделяется нейтронное оружие — двухфазный боеприпас малой мощности (от 1 кт до 25 кт), в котором 50—75 % энергии получается за счёт термоядерного синтеза. Поскольку основным переносчиком энергии при синтезе являются быстрые нейтроны, то при взрыве такого боеприпаса выход нейтронов может в несколько раз превышать выход нейтронов при взрывах однофазных ядерных взрывных устройств сравнимой мощности. За счёт этого достигается существенно больший вес таких поражающих факторов, как нейтронное излучение и наведённая радиоактивность (до 30 % от общего энерговыхода), что может быть важным с точки зрения задачи уменьшения радиоактивных осадков и снижения разрушений на местности при высокой эффективности применения против танковых войск и живой силы. Существуют мифические представления о том, что нейтронное оружие поражает исключительно людей и оставляет в сохранности строения. По разрушительному воздействию взрыв нейтронного боеприпаса в сотни раз превосходит любой неядерный боеприпас.
Мощность ядерного заряда измеряется в тротиловом эквиваленте — количестве тринитротолуола, которое нужно взорвать для получения той же энергии. Обычно его выражают в килотоннах (кт) и мегатоннах (Мт). (1 кт = 1000 т, 1 Мт = 1000000 т.) Тротиловый эквивалент условен: во-первых, распределение энергии ядерного взрыва по различным поражающим факторам существенно зависит от типа боеприпаса, и, в любом случае, сильно отличается от химического взрыва. Во-вторых, просто невозможно добиться полного сгорания соответствующего количества химического взрывчатого вещества.
Принято делить ядерные боеприпасы по мощности на пять групп:
-
сверхмалые — менее 1 кт; -
малые (1—10 кт); -
средние (10 — 100 кт); -
крупные (большой мощности) — от 100 кт до 1 Мт; -
сверхкрупные (сверхбольшой мощности) — свыше 1 Мт.
Разработка и первое испытание
Манхэттенский проект начал своё осуществление 17 сентября 1943 года. К нему было привлечено множество выдающихся учёных-физиков, многие из которых являлись беженцами из Европы.
К лету 1945 американцам удалось создать 3 атомные бомбы, 2 из которых были сброшены на Хиросиму и Нагасаки, а третью испытали незадолго до этого. Конструкция Хиросимовского «Малыша», урановой ядерной бомбы, была проста и надёжна (хотя и малоэффективна), и американские учёные не сомневались в её успехе. Плутониевый «Толстяк» же имел более сложную, но и более эффективную конструкцию, и нуждался в проверке. Так 16 июля 1945 года в Нью-Мексико было проведено