Файл: Пояснительная записка к курсовому проекту по дисциплине Схемотехника аналоговых электронных устройств.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 11.01.2024

Просмотров: 48

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
, , .

Выходное сопротивление:

. (3.3.23)

Выходная ёмкость:

. (3.3.24)
В соответствие с этими формулами получаем следующие значения элементов эквивалентной схемы:

нГн;

пФ;

Ом

Ом;

А/В;

Ом;

пФ.
3.3.4 Расчет полосы пропускания.
Проверим обеспечит ли выбранное сопротивлении обратной связи Rос, расчитанное в пункте 3.3.1, на нужной полосе частот требуемый коэффициент усиления, для этого воспользуемся следующими формулами[2]:

(3.3.25)

(3.3.26)

Найдем значение емкости коллектора при Uкэ=10В по формуле (3.3.12):



Найдем сопротивление базы по формуле (3.3.13):



Статический коэффициент передачи тока в схеме с ОБ найдем по формуле (3.3.14):



Найдем ток эмиттера по формуле (3.3.15):

А

Найдем сопротивление эмиттера по формуле (3.3.16):

Ом

Определим диффузионную емкость по формуле (3.3.18):


пФ

, (3.3.27)

, (3.3.28)

где Yн – искажения приходящиеся на каждый конденсатор;

дБ,

или

(3.3.29)









Гц

Выбранное сопротивление Rос обеспечивает заданный диапазон частот.
3.3.5 Расчёт цепей термостабилизации
Существует несколько вариантов схем термостабилизации. Их использование зависит от мощности каскада и от того, насколько жёсткие требования к термостабильности. В данной работе рассмотрены три схемы термостабилизации: пассивная коллекторная, активная коллекторная и эмиттерная.
3.3.4.1 Пассивная коллекторная термостабилизация
Данный вид термостабилизации (схема представлена на рисунке 3.8) используется на малых мощностях и менее эффективен, чем две другие, потому что напряжение отрицательной обратной связи, регулирующее ток через транзистор подаётся на базу через базовый делитель.


Рисунок 3.8
Расчёт, подробно описанный в [3], заключается в следующем: выбираем напряжение (в данном случае 7В) и ток делителя (в данном случае , где

– ток базы), затем находим элементы схемы по формулам:

; (3.3.30)

, (3.3.31)

где – напряжение на переходе база-эмиттер равное 0.7 В;

. (3.3.32)
Получим следующие значения:

Ом;

Ом;

Ом.
3.3.4.2 Активная коллекторная термостабилизация
Активная коллекторная термостабилизация используется в мощных каскадах и является очень эффективной, её схема представлена на рисунке 3.9. Её описание и расчёт можно найти в [2].


Рисунок 3.9
В качестве VT1 возьмём КТ361А. Выбираем падение напряжения на резисторе из условия (пусть В), затем производим следующий расчёт:

; (3.3.33)

; (3.3.34)

; (3.3.35)

; (3.3.36)

, (3.3.37)

где – статический коэффициент передачи тока в схеме с ОБ транзистора КТ361А;

; (3.3.38)

; (3.3.39)

. (3.3.40)
Получаем следующие значения:


Ом;

мА;

В;

кОм;

А;

А;

кОм;

кОм.
Величина индуктивности дросселя выбирается таким образом, чтобы переменная составляющая тока не заземлялась через источник питания, а величина блокировочной ёмкости – таким образом, чтобы коллектор транзистора VT1 по переменному току был заземлён.
3.3.4.3 Эмиттерная термостабилизация
Для выходного каскада выбрана эмиттерная термостабилизация, схема которой приведена на рисунке 3.10. Метод расчёта и анализа эмиттерной термостабилизации подробно описан в [3].


Рисунок 3.10

Расчёт производится по следующей схеме:

1.Выбираются напряжение эмиттера и ток делителя (см. рис. 3.4), а также напряжение питания ;

2. Затем рассчитываются .

3. Производится поверка – будет ли схема термостабильна при выбранных значениях и . Если нет, то вновь осуществляется подбор и .

В данной работе схема является термостабильной при
В и мА. Учитывая то, что в коллекторной цепи отсутствует резистор, то напряжение питания рассчитывается по формуле В. Расчёт величин резисторов производится по следующим формулам:

; (3.3.41)

; (3.3.42)

. (3.3.43)

Для того, чтобы выяснить будет ли схема термостабильной производится расчёт приведённых ниже величин.

Тепловое сопротивление переход – окружающая среда:

, (3.3.44)

где , – справочные данные;

К – нормальная температура.

Температура перехода:

, (3.3.45)

где К – температура окружающей среды (в данном случае взята максимальная рабочая температура усилителя);

– мощность, рассеиваемая на коллекторе.

Неуправляемый ток коллекторного перехода:

, (3.3.46)

где – отклонение температуры транзистора от нормальной;

лежит в пределах А;

– коэффициент, равный 0.063–0.091 для германия и 0.083–0.120 для кремния.

Параметры транзистора с учётом изменения температуры: