Файл: Электромагнитизм Магнитное.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 11.01.2024

Просмотров: 52

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
среды (коэффициента преломления и анизотропии). Воздух атмосферы Земли и вода её океанов могут рассматриваться как примеры мутных сред.

60. Приближение к спектральной яркости электромагнитного излучения как функции длины волны от абсолютно черного тела при данной температуре с помощью классических аргументов.

61. Теплово́е излуче́ние — электромагнитные волны, испускаемые телами за счёт их внутренней энергии. Излучаются телами, имеющими температуру больше 0 К, то есть разными нагретыми телами, поэтому и называется тепловым. Имеет сплошной спектр, расположение и интенсивность максимума которого зависят от температуры тела. При остывании последний смещается в длинноволновую часть спектра[1].

62. Закон излучения Кирхгофа гласит — отношение излучательной способности любого тела к его поглощательной способности одинаково для всех тел при данной температуре для данной частоты для равновесного излучения и не зависит от их формы, химического состава и проч.

63. Физическое тело, которое при любой температуре поглощает всё падающее на него электромагнитное излучение во всех диапазонах. Таким образом, у абсолютно чёрного тела поглощательная способность равна 1 для излучения всех частот, направлений распространения и поляризаций.

64. Основными законами теплового излучения являются: - закон Стефана-Больцмана; - закон излучения Кирхгофа; - закон смещения Вина. Закон Стефана-Больцмана. Полная объёмная плотность равновесного излучения и полная испускательная способность абсолютно чёрного тела пропорциональны четвёртой степени его температуры.

65.

66. Фундаментальная частица, квант электромагнитного излучения в виде поперечных электромагнитных волн и переносчик электромагнитного взаимодействия. Это безмассовая частица, способная существовать, только двигаясь со скоростью света. Электрический заряд фотона равен нулю. Фотон может находиться только в двух спиновых состояниях с проекцией спина на направление движения ±1. В физике фотоны обозначаются буквой γ.

67. Масса фотона  это масса
 движущегося фотона. Импульс фотона: Направление импульса фотона совпадает с направлением светового луча. Чем больше частота ν, тем больше энергия Е и импульс р фотона и тем отчетливее проявляются корпускулярные свойства света. Из-за того что постоянная Планка мала, энергия фотонов видимого излучения крайне незначительна.

68. Эффе́кт Ко́мптона (ко́мптон-эффе́ктко́мптоновское рассе́яние) — упругое рассеяние фотона заряженной частицей, обычно электроном, названное в честь первооткрывателя Артура Холли Комптона. Если рассеяние приводит к уменьшению энергии, поскольку часть энергии фотона передаётся отражающемуся электрону, что соответствует увеличению длины волны фотона (который может быть рентгеновским или гамма-фотоном), то этот процесс называется эффектом Комптона

69. Давление света (или давление электромагнитного излучения) это механическое давление, оказываемое на любую поверхность в результате обмена импульсом между объектом и электромагнитным полем.

70. Фотоэффе́кт, или фотоэлектри́ческий эффе́кт, — явление взаимодействия света или любого другого электромагнитного излучения с веществом, при котором энергия фотонов передаётся электронам вещества. В конденсированных (твёрдых и жидких) веществах выделяют внешний (поглощение фотонов сопровождается вылетом электронов за пределы вещества) и внутренний (электроны, оставаясь в веществе, изменяют в нём своё энергетическое состояние) фотоэффект. Фотоэффект в газах состоит в ионизации атомов или молекул под действием излучения[

71. Законы внешнего фотоэффекта:

Фототок насыщения прямо пропорционален интенсивности света, падающего на вещество

Максимальная кинетическая энергия фотоэлектронов увеличивается при увеличении частоты падающего на вещество излучения и не зависит от интенсивности света

72.



73. Фотосопротивлениями называют фотоэлектрические приборы, в которых используется свойство полупроводников увеличивать проводимость под действием света.

74. Применение фотоэффекта

Практическое применение фотоэффекта в технике может быть разнообразным. В частности, внешний фотоэффект применяется для воспроизведения звука, например, в кино. Кроме того, созданы специальные приборы для измерения яркости, силы света, освещенности. Явление фотоэффекта задействовано в управлении производственными процессами. Для этого есть специальные приборы, называемые фотоэлементами.

Применение фотоэффекта. Фотоэффект нашел широкое практическое применение в медицине, технике и других сферах. Превращение света в электрический ток используется для передачи изображения на огромные расстояния. Это используется в телевидении. Фотоэлементы применяют при считывании информации с оптических дисков. Их же применяют, например, в солнечных батареях для получения электроэнергии.

Физика Атома и Ядра

75. Резерфорду удалось обнаружить сложный состав радиоактивного излучения. Опыт состоял в следующем. Радиоактивный препарат помещали на дно узкого канала свинцового цилиндра, напротив помещалась фотопластинка. На выходившее из канала излучение действовало магнитное поле. При этом вся установка находилась в вакууме. В магнитном поле пучок распадался на три части.

76. Планета́рная моде́ль а́тома, или модель атома Резерфо́рда, — исторически важная модель строения атома, предложенная Эрнестом Резерфордом в классической статье, опубликованной в 1911 г. на основании анализа и статистической обработки результатов экспериментов по рассеиванию альфа-частиц в тонкой золотой фольге, выполненных Гейгером и Марсденом в 1909 г.

77. Спектр поглощения атома водорода является линейчатым, но содержит при нормальных условиях только серию Лаймана. Он также объясняется теорией Бора. Так как свободные атомы водорода обычно находятся в основном состоянии (стационарное состояние с наименьшей энергией при п= 1), то при сообщении 
атомам извне опреде-ленной энергии могут наблюдаться лишь переходы атомов из основного состояния в возбужденные (возникает серия Лаймана).

78. Се́рия Ба́льмера — одна из спектральных серий атома водорода, наблюдающаяся для переходов между вторым энергетическим (первым возбуждённым) уровнем атома и вышележащими уровнями[1]. В отличие от ультрафиолетовой серии Лаймана, связанной с переходами на основной уровень, четыре первые линии серии Бальмера лежат в видимой области спектра.

79.

80.

81. Квантовые постулаты Бора– это два основных допущения, введённые Н.Бором для объяснения устойчивости атома и спектральных закономерностей (в рамках модели атома Резерфорда).

82. Атом водорода по Бору представляет собой систему, состоящую из положительно заряженного ядра, в котором сосредоточена практически вся масса атома, и электрона, вращающегося вокруг ядра по стационарным орбитам

83. В законе сохранения энергии, записанном для ядерных реакций, под полной энергией подразумевается полная релятивистская энергия, определяемая формулой E = mc 2. Эта энергия mc 2 равна сумме энергии покоя частицы m0c 2 и ее.

84. Уровни энергии

Нижний уровень, соответствующий наименьшей возможной энергии системы, называется основным уровнем энергии, а все остальные уровни энергии — возбужденными уровнями энергии, так как для перехода на них систему необходимо возбудить — сообщить ей энергию.

85.

86. Гипотеза Луи де БройляДе Бройль выдвинул предложение, что корпускулярно – волновая двойственность свойств характерна не только для света, но и для частиц вещества. Допуская, что частицы вещества наряду с корпускулярными имеют также и волновые свойства, 
де Бройль перенес на случай частиц вещества те же правила перехода от одной картины к другой, какие справедливы в случае света.

87. Де Бройль утверждал, что не только фотоны, но и электроны и любые другие частицы материи наряду с корпускулярными обладают также и волновыми свойствами. Согласно де Бройлю, с каждым микрообъектом связаны, с одной стороны, корпускулярные характеристики – энергия E и импульс p, а с другой стороны, волновые характеристики – частота ν и длина волны λ.

88. Принцип неопределённости Гейзенбе́рга в квантовой механике — фундаментальное соображение (соотношение неопределённостей), устанавливающее предел точности одновременного определения пары характеризующих систему квантовых наблюдаемых, описываемых некоммутирующими операторами (например, координаты и импульса, тока и напряжения, электрического и магнитного полей).

89. Уравне́ние Шрёдингера — линейное дифференциальное уравнение в частных производных, описывающее изменение в пространстве (в общем случае, в конфигурационном пространстве) и во времени чистого состояния, задаваемого волновой функцией, в гамильтоновых квантовых системах.

90. Волновая функция связана с плотностью вероятности нахождения частицы в некоторой области пространства в некоторый момент времени следующим образом: вероятность нахождения частицы в некоторой точке пропорциональна квадрату модуля волновой функции в ней. Волновая функция является функцией от всех степеней свободы этой частицы, которым, в свою очередь, соответствует некоторый набор коммутирующих квантовых переменных.

91. Принцип исключения Паули (принцип запрета Паули или просто принцип запрета) — это квантово-механический принцип, который гласит, что два или более идентичных