Файл: Биология как одна из теоретических основ медицины, ее задачи, объект и методы исследования. Разделы дисциплины биологии и их значение для деятельности врача.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 11.01.2024

Просмотров: 1111

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Прокариоты — доядерные ор­ганизмы, не имеющие типичного ядра, заключенного в ядерную мембрану. Генетический материал представлен единственной нитью ДНК, образующей кольцо,— генофором. Эта нить не приобрела еще сложного строения, характерного для хромосом, в ней нет белков-гистонов. Деление клетки толь­ко амитотическое. В клетке прокариотов отсутствуют митохондрии, центриоли, пластиды, развитая система мембран. Из организмов, имеющих клеточное строение, наиболее примитивны мико­плазмы. Это бактериоподобные су­щества, ведующие паразитический или сапрофитный образ жизни. По разме­рам микоплазма приближается к виру­сам. Самые мелкие клетки микоплаз-мы крупнее вируса гриппа, но мельче вируса коровьей оспы. Так, если вирус гриппа имеет диаметр от 0,08 до 0,1 мкм, а вирус коровьей оспы — от 0,22 до 0,26 мкм, то диаметр «клеток» микоплазмы — возбудителя поваль­ного воспаления легких рогатого ско­та — от 0,1 до 0,2 мкм.

В отличие от вирусов, осуществляю­щих процессы жизнедеятельности толь­ко после проникновения в клетки, микоплазма способна проявлять жизне­деятельность, свойственную организ­мам, имеющим клеточное строение. Эти бактериоподобные существа могут рас­ти и размножаться на синтетической среде. Их «клетка» построена из срав­нительно небольшого числа молекул (около 1200), но имеет полный набор макромолекул, характерных для любых клеток (белки, ДНК и РНК) и содер­жит около 300 различных ферментов.

По некоторым признакам «клетки» микоплазмы ближе стоят к клеткам животных, чем растений. Они не имеют жесткой оболочки, окружены гибкой мембраной; состав липидов близок к таковому клеток животных. Как уже сказано, к прокариотам относятся бактерии и синезеленые во­доросли, объединяемые общим терми­ном «дробянки». Клетка типичных дро­бянок покрыта оболочкой из целлю­лозы. Дробянки играют существенную роль в круговороте веществ в природе: синезеленые водоросли — как синте­тики органического вещества, бакте­рии — как минерализирующие его. Многие бактерии имеют медицинское и ветеринарное значение как возбудите­ли заболеваний. Эукариоты — ядерные орга­низмы, имеющие ядро, окруженное ядерной мембраной. Генетический ма­териал сосредоточен преимущественно в хромосомах, имеющих сложное строе­ние и состоящих из нитей ДНК и бел­ковых молекул. Деление клеток митоти-ческое. Имеются центриоли, митохонд­рии, пластиды. Среди эукариотов су­ществуют как одноклеточные, так и многоклеточные организмы.

троение
вирусов. Наряду с одно- и многоклеточными организмами в природе существуют и другие формы жизни. Таковыми являются вирусы, не имеющие клеточного строения. Они представляют собой переходную форму между неживой и живой материей.

Вирусы (лат. virus — яд) были открыты в 1892 г. русским ученым Д. И. Ивановским при исследовании мозаичной болезни листьев табака.

Каждая вирусная частица состоит из РНК или ДНК, заключенной в белковую оболочку, которую называют капсидом. Полностью сформированная инфекционная частица называется вирионом. У некоторых вирусов (например, герпеса или гриппа) есть еще и дополнительная липопротеидная оболочка, возникающая из плазматической мембраны клетки хозяина.

Поскольку в составе вирусов присутствует всегда один тип нуклеиновой кислоты — ДНК или РНК, вирусы делят также на ДНК-содержащие и РНК-содержащие. При этом наряду с двухцепочечными ДНК и одноцепочечными РНК встречаются одноцепочечные ДНК и двухцепочечные РНК. ДНК могут иметь линейную и кольцевую структуры, а РНК, как правило, линейную. Подавляющее большинство вирусов относится к РНК-типу.

Вирусы способны размножаться только в клетках других организмов. Вне клеток организмов они не проявляют никаких признаков жизни. Многие из них во внешней среде имеют форму кристаллов. Размеры вирусов колеблются в пределах от 20 до 300 нм в диаметре.

Хорошо изучен вирус табачной мозаики, имеющий палочковидную форму и представляющий собой полый цилиндр. Стенка цилиндра образована молекулами белка, а в его полости расположена спираль РНК (рис. 5.2). Белковая оболочка защищает нуклеиновую кислоту от неблагоприятных условий внешней среды, а также препятствует проникновению ферментов клеток к РНК и ее расщеплению.



Рис. 5.2. Схема строения вируса (а) и бактериофага (б); 1— нуклеиновая кислота; 2белковая оболочка; 3полый стержень; 4базальная пластинка; 5отростки (нити).

Молекулы вирусной РНК могут самовоспроизводиться. Это означает, что вирусная РНК является источником генетической информации и одновременно иРНК. Поэтому в пораженной клетке в соответствии с программой нуклеиновой кислоты вируса на рибосомах клетки хозяина синтезируются специфические вирусные белки и осуществляется процесс самосборки этих белков с нуклеиновой кислотой в новые вирусные частицы. Клетка при этом истощается и погибает. При поражении некоторыми вирусами клетки не разрушаются, а начинают усиленно делиться, часто образуя у животных, в том числе и человека, злокачественные опухоли.



Бактериофаги. Особую группу представляют вирусы бактерий — бактериофаги, или фаги, которые способны проникать в бактериальную клетку и разрушать ее.

Тело фага кишечной палочки состоит из головки, от которой отходит полый стержень, окруженный чехлом из сократительного белка. Стержень заканчивается базальной пластинкой, на которой закреплены шесть нитей (см. рис. 5.2). Внутри головки находится ДНК. Бактериофаг при помощи отростков прикрепляется к поверхности кишечной палочки и в месте соприкосновения с ней растворяет с помощью фермента клеточную стенку. После этого за счет сокращения головки молекула ДНК фага впрыскивается через канал стержня в клетку. Примерно через 10—15 мин под действием этой ДНК перестраивается весь метаболизм бактериальной клетки, и она начинает синтезировать ДНК бактериофага, а не собственную. При этом синтезируется и фаговый белок. Завершается процесс появлением 200— 1 000 новых фаговых частиц, в результате чего клетка бактерии погибает.

Бактериофаги, образующие в зараженных клетках новое поколение фаговых частиц, что приводит к лизису (распаду) бактериальной клетки, называются вирулентными фагами.

Некоторые бактериофаги внутри клетки хозяина не реплицируются. Вместо этого их нуклеиновая кислота включается в ДНК хозяина, образуя с ней единую молекулу, способную к репликации. Такие фаги получили название умеренных фагов или профагов.
5.Основные структурные компоненты клетки. Структура и функция цитоплазмы. Органеллы животной и растительной клетки: определение, классификация. Включения: определение, виды.

Структура и функция компонентов клетки. Как правило, клетки обладают микроскопическими размерами. Части клетки, выполняющие различные функ­ции,— органоиды— имеют микроскопи­ческие и субмикроскопические разме­ры. Диаметр большинства клеток ко­леблется от 0,01 до 0,1 мм (или от 10 до 100 мкм). Диаметр самых мелких клеток животных равен 4 мкм. Объем большинства клеток человека нахо­дится в пределах 200—15 000 мкм3. Однако известны и очень крупные клет­ки, видимые невооруженным глазом. Величина клеток зависит от выполняе­мых ими функций. Так, яйцеклетки благодаря накоплению в них пита­тельных веществ достигают больших размеров. У многих растений (арбуз, помидор, лимон и др.) крупные раз­меры имеют клетки плодов, включаю­щие вакуоли с клеточным соком.

Размеры клеток прямо не связаны с величиной организма. Так, клетки пе­чени и почек у лошади, крупного скота и мыши имеют примерно одинаковую величину. Величина органов, как и размеры целого организма животных и растений, зависит от числа клеток.


Форма клеток также обусловлена выполняемыми ими функциями. Мы­шечные клетки вытянуты. Клетки по­кровной ткани многоугольны. Нервные клетки благодаря большому числу от­ростков приобрели звездчатую форму. Свободно подвижные лейкоциты имеют округлую и могут принимать амебоид­ную форму и т. д.

Число клеток, строящих организм, разнообразно: от одной (у протестов) или небольшого числа (у коловраток и круглых червей) до многих миллиар­дов, как у большинства многоклеточ­ных.

Структурные компоненты цитоплаз­мы. Строение клеток животных и расте­ний в основных чертах сходно. В теле клетки — протоплазме — различают цитоплазму и кариоплаз­му. Цитоплазма и кариоплазма (яд­ро) — обязательные составные части клетки. При удалении ядра клетка длительно существовать не может; точно так же ядро, выделенное из клет­ки, погибает.

Цитоплазма составляет основную массу клетки. При рассматривании живой клетки в световом микроскопе цитоплазма представляется гомогенной, бесцветной, прозрачной вязкой жидко­стью. Однако электронный микроскоп позволил увидеть тонкую структуру цитоплазмы (рис. 2.2). В цитоплазме различают гиалоплазу — цитоплазматический матрикс, органоиды и вклю­чения.

Цатоплазматаческий мат­рикс. Основное вещество клетки состав­ляет цитоплазматический матрикс, или гиалоплазма. С ним связаны коллоид­ные свойства цитоплазмы, ее вязкость, эластичность, сократимость, внутреннее движение. По химическому составу ци­топлазматический матрикс построен преимущественно из белков; в состав его входят ферменты. Под электронным микроскопом цитоплазматическиймат-рикс представляется однородным тон­козернистым веществом. Иногда обна­руживаются тонкие нити (толщиной менее 10 нм) или пучки их. Даже в од­ной клетке разные участки цитоплазматического матрикса могут иметь неоди­наковую макромолекулярную струк­туру.

Функционально цитоплазматический матрикс является внутренней средой клетки, местом осуществления внутриклеточного обмена. В нем осу­ществляется гликолиз, с которым свя­зан поток энергии. В цитоплазматическом матриксе расположены структуры клетки — органоиды, ядра и вклю­чения

Органоиды— это постоянные диф­ференцированные участки цитоплазмы, имеющие определенные функции и строение. Различают органоиды общего значения и специальные. Специальные органоиды характерны для клеток, вы­полняющих определенные функции: миофибрилы, с которыми связано со­кращение мышечных клеток, реснички эпителия в трахеях и бронхах, микро­ворсинки всасывающей поверхности эпителия клеток тонких кишок и т.д. К органоидам общего значения отно­сятся: эндоплазматическнй ретикулум, рибосомы, лизосомы, митохондрии, пластинчатый комплекс, клеточный центр (центросома), микротрубочки, пластиды.


Эндоплазматическая сеть, или вакуолярная си­стема, обнаружена в клетках всех растений и животных, подвергнутых исследованию под электронным микро­скопом. Она представляет собой систе­му мембран, формирующих сеть ка­нальцев и цистерн. Эндоплазматическая сеть имеет большое значение в про­цессах внутриклеточного обмена, так как увеличивает площадь «внутренних поверхностей» клетки, делит ее на отсеки, отличающиеся физическим со­стоянием и химическим составом, обес­печивает изоляцию ферментных си­стем, что, в свою очередь, необходимо для их последовательного вступления в согласованные реакции. Непосредст­венным продолжением эндоплазматической сети являются ядерная мембрана, отграничивающая ядро от цитоплазмы, и наружная мембрана (плазмалемма), расположенная на периферии клетки.

В совокупности внутриклеточные ка­нальцы и цистерны образуют целост­ную систему, называемую некоторыми исследователями вакуолярной. Наи­более развита вакуолярная система в клетках с интенсивным обменом ве­ществ.

Предполагают ее участие в ак­тивном перемещении внутри клетки жидкостей, как тех, которые синтези­руются в клетке, так и поступающих извне.