Файл: Для достижения поставленной цели поставлены следующие задачи.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 11.01.2024
Просмотров: 249
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Максимальное количество водоцементного раствора, которое обычно удается задавить в трещины, образовавшиеся в процессе гидроразрыва, пе превышает 3 ж , а раствора цемента на углеводородной основе — 5 ж при давлении 200—300 ат. Для задавки в нласт больших количеств цементных растворов необходимо создать такие растворы, из которых отфильтрование жидкой фазы было бы минимальным. Такие растворы цемента на основе гидрофильных водо-нефтяных суспензий, стабилизированных ОП-10, ОП-7 и УФЭд, были созданы.. При промышленных испытаниях, проведенных лабораторией интенсификации добычи нефти (Б. Г. Логинов, И. И. Кравченко, Е. Н. Умрихина) с суспензиями цемента в таких эмульсиях, удалось закачать в трещины до 20 т цемента при давлении 100—120 ат.
Одной из важнейших проблем нефтяной отрасли является повышение эффективности эксплуатации скважин. Особую актуальность она приобретает при разработке залежей аномально вязких нефтей, где их добыча осложняется проявлением аномалий вязкости и подвижности нефти, образованием асфальтосмолопарафиновых отложений и высоковязких эмульсий в призабойной зоне пласта, повышенной коррозионной агрессивностью скважинной продукции и сопровождается существенным снижением продуктивности добывающих и приемистости нагнетательных скважин. Успех решения указанной проблемы во многом зависит от разработки и внедрения новых химических реагентов и составов технологических жидкостей во всех без исключения процессах нефтедобычи, начиная от вскрытия продуктивного пласта и кончая консервацией или ликвидацией скважин. Работы в этом направлении на протяжении ряда лет ведутся на кафедре Разработка и эксплуатация нефтегазовых месторождений Уфимского государственного нефтяного технического университета под руководством и при непосредственном участии автора.
Осуществленные мероприятия в значительной степени способствовали сокращегшю поступления загрязнения в поверхностные водоемы, подземные воды, почву и атмосферу. Однако в нас гояп1,ее время современная техника и технология еще не могут полностью исключить отрицательного влияния процессов добычи, подготовки и транспортировки нефти и газа на окружающую среду. В значительной степени это объясняется тем, что процесс разработки и эксплуатации нефтяных месторождений существенно осложняется нежелательными явлениями, заключающимися в отложении неорганических солей, асфальтосмолопарафиновых веществ и коррозии нефтепромыслового оборудования и коммуникаций. К ним относятся также интенсивный рост сульфатвосстанавливающих бактерий в нефтяных пластах с образованием сероводорода и углекислого газа, приводящий к ухудшению проницаемости нефтесодержащих пород и развитию микробиологической коррозии металла. Высокое содержание воды в нефти и механических примесей в водонефтяной эмульсии является также осложняющим моментом в процессе добычи и подготовки нефти. Преобладающее большинство используемых в нефтяной промышленности химических реагентов предназначены для борьбы с указанными осложнени ями ингибиторы соле- и парафиноотложений, ингибиторы коррозии, ингибиторы микробиологической коррозии, деэмульгаторы и др.
Нефть — более тяжелая жидкость, чем конденсат, и содержит значительно больше масел, парафинов и других высокомолекулярных соединений. Многие нефти более чем на 99 % состоят из углеводородов, наиболее широко из которых представлены углеводороды парафинового и нафтенового рядов. В нефтях также имеются в небольших количествах другие классы органических соединений — кислородные, сернистые, асфальтосмолистые и др. Большинство сернистых и кислородсодержащих соединений являются поверхностно-активными соединениями. Они агрессивны по отношению к металлу и вызывают сильную коррозию. Обычной примесью в нефти является пластовая минерализованная вода, которая вызывает значительные осложнения при сборе и транспорте нефти. Отрицательное качество пластовой воды — ее способность образовывать водо-нефтяпые эмульсии, которые осложняют движение нефтяных систем по трубопроводам (скопление воды в изгибах и замерзание, приводящее к разрыву трубопроводов), а также подготовку и переработку нефти. Поверхностно-активные вещества способствуют образованию эмульсий и поэтому называются эмульгаторами. Присутствие в нефти поверхностно-активных веществ облегчает образование эмульсий и повышает их устойчивость (свойство сохранять эмульсию в течение длите.тьного времени). В нефти содержатся также низкомолекулярные компоненты, которыми особо богата легкая нефть. Эти компоненты могут находиться как в жидкой, так и в газовой фазах. Изменение давления и температуры в процессе движения нефти по цепочке пласт — скважина — система сбора и подготовки — магистральный трубопровод приводит к интенсивному выделению из нефти легких компонент, в результате чего повышается газовый фактор (объем газа в единице объема нефтяной смеси, м /м ).
Наличие свободного газа в нефти (нефтяной газ) также вызывает осложнения при добыче, сборе, подготовке и транспортировке нефти. Иногда наблюдается прорыв газа в продуктивные скважины из газовой шапки пласта или из газосодержащих горизонтов, что приводит к увеличению газового фактора добываемой нефти. Дисперсионная среда и дисперсная фаза. Дисперсность
Система из двух (или более) веществ, в которой одно вещество измельчено и распределено в другом, называется дисперсной (от лат. dispersus– рассеянный).
Вещество, образующее сплошную фазу называют дисперсионнойсредой; измельченное и распределенное в ней вещество называют дисперсной фазой. Например, глинистый раствор (взмученная в воде глина) состоит из воды – дисперсионной среды и взвешенных в ней мелких частиц глины – дисперсной фазы.
2.3 Способы разрушения эмульсии
Эмульсии представляют собой дисперсные системы из двух жидкостей, не растворимых или малорастворимых друг в друге, одна из которых диспергирована в другой в виде мелких капелек (глобул). Нефтяные эмульсии бывают двух типов: «нефть в воде» (гидрофильная) и «вода в нефти» (гидрофобная). Цвет эмульсии — от желтого до темно-коричневого, консистенция — от сметано- до мазеподобной. Вязкость нефтяных эмульсий возрастает с увеличением содержания воды (до 60—80%), а затем падает.
Стойкость эмульсии зависит от наличия в ней эмульгаторов — веществ, растворимых в одной из жидкостей и образующих как бы пленку, обволакивающую капельки и препятствующую их слиянию. Эмульгаторы бывают гидрофильные и гидрофобные. К гидрофильным эмульгаторам, хорошо растворимым в воде и не растворимым в нефти, относятся натриевые соли нафтеновых кислот, сульфокислоты и др.; к гидрофобным эмульгаторам, хорошо растворимым в нефти и не растворимым в воде, нафтенаты, тонкоизмельченные частицы глины, окислы металлов (особенно Са, Mg, Fe, A1), смолисто-асфальтеновые вещества и др. Наличие эмульгаторов способствует образованию эмульсии, отвечающей по типу названию эмульгатора. Другая причина стойкости эмульсии — накопление зарядов статического электричества на каплях воды и твердых частицах. Под влиянием этих зарядов происходит взаимное отталкивание частиц воды.
Тип эмульсии определяют двумя способами. Первый — растворение ее в воде и бензине. Гидрофильная эмульсия («нефть в воде») растворяется в воде и опускается на дно в бензине, обратное явление наблюдается для гидрофобной эмульсии («вода в нефти»). Второй способ основан на определении проводимости электрического тока: его проводят только гидрофильные эмульсии.
Перерабатывать нефть с эмульсией нельзя, поэтому ее предварительно разрушают — деэмульгируют. Деэмульгирование нефти нужно проводить возможно раньше (свежие эмульсии разрушаются легче) с использованием высокоэффективных деэмульгаторов. На НПЗ их расход в зависимости от подготовки нефти на промыслах составляет 20—50 г/т нефти (0,002—0,005%). Существуют различные способы удаления воды из нефти и разрушения эмульсий: механический, термический, химический, термохимический и электрический.
Механический способ разрушения эмульсий основан на применении отстаивания, центрифугирования и фильтрования. Процесс отстаивания в большинстве случаев является первой стадией разрушения эмульсий. Центрифугирование и фильтрование применяют в лабораторных условиях для определения содержания воды в нефти. В промышленности центрифугирование из-за малой производительности центрифуг и большого расхода электроэнергии не нашло применения. Практически не применяют и фильтрование, так как оно требует частой смены фильтров, что связано с большими трудовыми затратами.
Термический способ разрушения нефтяных эмульсий основан на применении тепла. При нагревании эмульсии пленка эмульгатора расширяется и разрушается, а капельки жидкости сливаются друг с другом. Внизу отстаивается вода, наверху — нефть. Обычно отстаивают и нагревают нефть в резервуарах-отстойниках при температуре до 70°С. Но встречаются эмульсии, которые не разрушаются даже при 120°С. В этом случае прибегают к другим методам разрушения эмульсии или проводят процесс при более высоких температурах и с большей герметизацией во избежание потерь легких фракций.
Химический способ разрушения эмульсий применяют сейчас все чаще. Используемые для этого вещества — деэмульгаторы вытесняют действующий эмульгатор, либо растворяют его, благодаря чему эмульсия разрушается. В последнее время наиболее широко применяют деэмульгаторы типа неионогенных поверхностно-активных веществ (на основе окисей этилена и пропилена), которые способствуют образованию эмульсий, противоположных по типу разрушаемым. При соприкосновении таких эмульсий их эмульгирующая способность парализуется, и эмульсия расслаивается.
Термохимический способ заключается во введении в подогретую нефть деэмульгатора. Он эффективен при использовании высококачественных деэмульгаторов. Более совершенный термохимический способ — обезвоживание нефти в герметизированной аппаратуре, где в присутствии деэмульгатора под давлением до 0,9 МПа (9 кгс/см2) нефть, предварительно нагретая в теплообменниках или печах до 150—155°С, отстаивается от воды. Этот способ применяют при разрушении стойких эмульсий тяжелых нефтей.
Электрический способ нашел применение на промыслах и особенно на нефтеперерабатывающих заводах. Сущность его заключается в том, что под действием на эмульсию электрического поля, созданного высоким напряжением переменного тока, пленка разрывается и эмульсия разрушается.
2.4 Характеристика деэмульгаторов для разрушения эмульсии
Деэмульгаторы для разрушения нефтяных эмульсий представляют собой синтетические ПАВ, обладающие по сравнению с природными эмульгаторами более высокой поверхностной активностью.
Влияние деэмульгатора в процессах обезвоживания и обессоливания:
-
разрушение бронирующего слоя, окружающего капли пластовой воды, предотвращение его образования вокруг капель вновь подаваемой в нефть промывной воды; -
деэмульгатор, воздействуя на на нефтяную эмульсию, адсорбируется на поверхности раздела фаз нефть - вода, вытесняет и замещает менее активные природные ПАВ - эмульгаторы.
Расход деэмульгатора, т.е. количество его в г/т, необходимое для эффективного обессоливания и обезвоживания нефти, является важным технологическим показателем, который зависит от природы нефти и типа самого деэмульгатора.
Природные эмульгаторы - естественные ПАВ, содержащиеся в нефти (асфальтены, нафтены, смолы, парафины) и в пластовой воде.
Деэмульгаторы должны обладать большей активностью, чем эмульгаторы.
Пленка, образуемая деэмульгатором, менее прочна:
-
по мере накопления деэмульгатора на поверхности капелек воды между ними возникают силы взаимного притяжения; -
мелкие диспергированные капельки воды образуют большие капли, в которых пленки вокруг глобул воды сохраняются; -
процесс образования больших капель (хлопьев) из мелкодиспергированных капелек воды в результате воздействия деэмульгатора называется флоккуляцией (хлопьеобразованием). В процессе флоккуляции поверхностная пленка глобул воды становится достаточно ослабленной, происходит ее разрушение и слияние глобул воды; -
процесс слияния капелек воды называется коалесценцией. Деэмульгаторы должны обеспечивать коалесценцию.
В нефти присутствуют механические примеси (сульфид железа, частицы глины ил, и т. д.), частички которых собираются на поверхности раздела и способствуют упрочнению пленки, обволакивающей глобулы воды. Часто эти механические примеси являются основными веществами, составляющими материал пленки, и удаление их вместе с водой также является важной задачей при обезвоживании нефти. Деэмульгаторы обволакивают частицы механических примесей тонкой пленкой, хорошо смачиваемой водой, и такие частицы выделяются из нефти и удаляются вместе с водой.
Свойства реагентов - деэмульгаторов для разрушения нефтяных эмульсий:
-
способностью проникать на поверхность раздела фаз нефть - вода; -
вызывать флоккуляцию и коалесценцию глобул воды; -
хорошо смачивать поверхность механических примесей.
Деэмульгаторы обычно подразделяются на 2 группы: -
ионогенные - образующие ионы в водных растворах; -
неионогенные - не образующие ионы в водных растворах.
Были проведены сопоставительные испытания эффективности деэмульгаторов марок СНПХ-4204, СНПХ-4410 и Диссольван-4411, а также определено влияния их расхода на разрушение эмульсий воды в нефти при комнатной температуре (18-25°С) и при рабочих температурах деэмульгатора.