Файл: Программа основного общего образования 2022.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 11.01.2024

Просмотров: 2618

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Содержание

1. Целевой раздел ПРИМЕРНОЙ ОСНОВНОЙ ОБРАЗОВАТЕЛЬНОЙ программы основного общего образования

1.1. Пояснительная записка

1.2. Планируемые результаты освоения обучающимися основной образовательной программы основного общего образования: общая характеристика

1.3. Система оценки достижения планируемых результатов освоения основной образовательной программы

2.2. Примерная Программа формирования универсальных учебных действий у обучающихся

2.3. Примерная программа воспитания

2.4. Программа коррекционной работы

3. Организационный раздел программы основного общего образования

3.1. Примерный учебный план программы основного общего образования

3.2. Примерный План внеурочной деятельности

3.3. ПРИМЕРНЫЙ календарный План воспитательной работы

3.4. Характеристика условий реализации программы основного общего образования в соответствии с требованиями ФГОС ООО


Наглядная геометрия

  • Пользоваться геометрическими понятиями: точка, прямая, отрезок, луч, угол, многоугольник, окружность, круг.

  • Приводить примеры объектов окружающего мира, имеющих форму изученных геометрических фигур.

  • Использовать терминологию, связанную с углами: вершина сторона; с многоугольниками: угол, вершина, сторона, диагональ; с окружностью: радиус, диаметр, центр.

  • Изображать изученные геометрические фигуры на нелинованной и клетчатой бумаге с помощью циркуля и линейки.

  • Находить длины отрезков непосредственным измерением с помощью линейки, строить отрезки заданной длины; строить окружность заданного радиуса.

  • Использовать свойства сторон и углов прямоугольника, квадрата для их построения, вычисления площади и периметра.

  • Вычислять периметр и площадь квадрата, прямоугольника, фигур, составленных из прямоугольников, в том числе фигур, изображённых на клетчатой бумаге.

  • Пользоваться основными метрическими единицами измерения длины, площади; выражать одни единицы величины через другие.

  • Распознавать параллелепипед, куб, использовать терминологию: вершина, ребро грань, измерения; находить измерения параллелепипеда, куба.

  • Вычислять объём куба, параллелепипеда по заданным измерениям, пользоваться единицами измерения объёма.

  • Решать несложные задачи на измерение геометрических величин в практических ситуациях.


6 класс

Числа и вычисления

  • Знать и понимать термины, связанные с различными видами чисел и способами их записи, переходить (если это возможно) от одной формы записи числа к другой.

  • Сравнивать и упорядочивать целые числа, обыкновенные и десятичные дроби, сравнивать числа одного и разных знаков.

  • Выполнять, сочетая устные и письменные приёмы, арифметические действия с натуральными и целыми числами, обыкновенными и десятичными дробями, положительными и отрицательными числами.

  • Вычислять значения числовых выражений, выполнять прикидку и оценку результата вычислений; выполнять преобразования числовых выражений на основе свойств арифметических действий.

  • Соотносить точку на координатной прямой с соответствующим ей числом и изображать числа точками на координатной прямой, находить модуль числа.

  • Соотносить точки в прямоугольной системе координат с координатами этой точки.

  • Округлять целые числа и десятичные дроби, находить приближения чисел.

Числовые и буквенные выражения

  • Понимать и употреблять термины, связанные с записью степени числа, находить квадрат и куб числа, вычислять значения числовых выражений, содержащих степени.

  • Пользоваться признаками делимости, раскладывать натуральные числа на простые множители.

  • Пользоваться масштабом, составлять пропорции и отношения.

  • Использовать буквы для обозначения чисел при записи математических выражений, составлять буквенные выражения и формулы, находить значения буквенных выражений, осуществляя необходимые подстановки и преобразования.

  • Находить неизвестный компонент равенства.

Решение текстовых задач

  • Решать многошаговые текстовые задачи арифметическим способом.

  • Решать задачи, связанные с отношением, пропорциональностью величин, процентами; решать три основные задачи на дроби и проценты.

  • Решать задачи, содержащие зависимости, связывающие величины: скорость, время, расстояние, цена, количество, стоимость; производительность, время, объёма работы, используя арифметические действия, оценку, прикидку; пользоваться единицами измерения соответствующих величин.

  • Составлять буквенные выражения по условию задачи.

  • Извлекать информацию, представленную в таблицах, на линейной, столбчатой или круговой диаграммах, интерпретировать представленные данные; использовать данные при решении задач.

  • Представлять информацию с помощью таблиц, линейной и столбчатой диаграмм.


Наглядная геометрия

  • Приводить примеры объектов окружающего мира, имеющих форму изученных геометрических плоских и пространственных фигур, примеры равных и симметричных фигур.

  • Изображать с помощью циркуля, линейки, транспортира на нелинованной и клетчатой бумаге изученные плоские геометрические фигуры и конфигурации, симметричные фигуры.

  • Пользоваться геометрическими понятиями: равенство фигур, симметрия; использовать терминологию, связанную с симметрией: ось симметрии, центр симметрии.

  • Находить величины углов измерением с помощью транспортира, строить углы заданной величины, пользоваться при решении задач градусной мерой углов; распознавать на чертежах острый, прямой, развёрнутый и тупой углы.

  • Вычислять длину ломаной, периметр многоугольника, пользоваться единицами измерения длины, выражать одни единицы измерения длины через другие.

  • Находить, используя чертёжные инструменты, расстояния: между двумя точками, от точки до прямой, длину пути на квадратной сетке.

  • Вычислять площадь фигур, составленных из прямоугольников, использовать разбиение на прямоугольники, на равные фигуры, достраивание до прямоугольника; пользоваться основными единицами измерения площади; выражать одни единицы измерения площади через другие.

  • Распознавать на моделях и изображениях пирамиду, конус, цилиндр, использовать терминологию: вершина, ребро, грань, основание, развёртка.

  • Изображать на клетчатой бумаге прямоугольный параллелепипед.

  • Вычислять объём прямоугольного параллелепипеда, куба, пользоваться основными единицами измерения объёма; выражать одни единицы измерения объёма через другие.

  • Решать несложные задачи на нахождение геометрических величин в практических ситуациях.

Примерная рабочая программа
учебного курса «Алгебра». 7—9 классы


Цели изучения учебного курса

Алгебра является одним из опорных курсов основной школы: она обеспечивает изучение других дисциплин, как естественнонаучного, так и гуманитарного циклов, её освоение необходимо для продолжения образования и в повседневной жизни. Развитие у обучающихся научных представлений о происхождении и сущности алгебраических абстракций, способе отражения математической наукой явлений и процессов в природе и обществе, роли математического моделирования в научном познании и в практике способствует формированию научного мировоззрения и качеств мышления, необходимых для адаптации в современном цифровом обществе. Изучение алгебры естественным образом обеспечивает развитие умения наблюдать, сравнивать, находить закономерности, требует критичности мышления, способности аргументированно обосновывать свои действия и выводы, формулировать утверждения. Освоение курса алгебры обеспечивает развитие логического мышления обучающихся: они используют дедуктивные и индуктивные рассуждения, обобщение и конкретизацию, абстрагирование и аналогию. Обучение алгебре предполагает значительный объём самостоятельной деятельности обучающихся, поэтому самостоятельное решение задач естественным образом является реализацией деятельностного принципа обучения.


В структуре программы учебного курса «Алгебра» основной школы основное место занимают содержательно-методические линии: «Числа и вычисления»; «Алгебраические выражения»; «Уравнения и неравенства»; «Функции». Каждая из этих содержательно-методических линий развивается на протяжении трёх лет изучения курса, естественным образом переплетаясь и взаимодействуя с другими его линиями. В ходе изучения курса обучающимся приходится логически рассуждать, использовать теоретико-множественный язык. В связи с этим целесообразно включить в программу некоторые основы логики, пронизывающие все основные разделы математического образования и способствующие овладению обучающимися основ универсального математического языка. Таким образом, можно утверждать, что содержательной и структурной особенностью курса «Алгебра» является его интегрированный характер.

Содержание линии «Числа и вычисления» служит основой для дальнейшего изучения математики, способствует развитию у обучающихся логического мышления, формированию умения пользоваться алгоритмами, а также приобретению практических навыков, необходимых для повседневной жизни. Развитие понятия о числе в основной школе связано с рациональными и иррациональными числами, формированием представлений о действительном числе. Завершение освоения числовой линии отнесено к старшему звену общего образования.

Содержание двух алгебраических линий  «Алгебраические выражения» и «Уравнения и неравенства» способствует формированию у обучающихся математического аппарата, необходимого для решения задач математики, смежных предметов и практико-ориентированных задач. В основной школе учебный материал группируется вокруг рациональных выражений. Алгебра демонстрирует значение математики как языка для построения математических моделей, описания процессов и явлений реального мира. В задачи обучения алгебре входят также дальнейшее развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики, и овладение навыками дедуктивных рассуждений. Преобразование символьных форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству.

Содержание функционально-графической линии нацелено на получение школьниками знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов и явлений в природе и обществе. Изучение этого материала способствует развитию у обучающихся умения использовать различные выразительные средства языка математики 
словесные, символические, графические, вносит вклад в формирование представлений о роли математики в развитии цивилизации и культуры.

Место учебного курса в учебном плане

Согласно учебному плану в 79 классах изучается учебный курс «Алгебра», который включает следующие основные разделы содержания: «Числа и вычисления», «Алгебраические выражения», «Уравнения и неравенства», «Функции».

Учебный план на изучение алгебры в 79 классах отводит не менее 3 учебных часов в неделю в течение каждого года обучения, всего за три года обучения  не менее 306 учебных часов.

Содержание учебного курса (по годам обучения)

7 класс

Числа и вычисления

Рациональные числа

Дроби обыкновенные и десятичные, переход от одной формы записи дробей к другой. Понятие рационального числа, запись, сравнение, упорядочивание рациональных чисел. Арифметические действия с рациональными числами. Решение задач из реальной практики на части, на дроби.

Степень с натуральным показателем: определение, преобразование выражений на основе определения.

Проценты, запись процентов в виде дроби и дроби в виде процентов. Три основные задачи на проценты, решение задач из реальной практики.

Применение признаков делимости, разложение на множители натуральных чисел.

Реальные зависимости, в том числе прямая и обратная пропорциональности.

Алгебраические выражения

Переменные, числовое значение выражения с переменной. Представление зависимости между величинами в виде формулы. Вычисления по формулам.

Преобразование буквенных выражений, тождественно равные выражения, правила преобразования сумм и произведений, правила раскрытия скобок и приведения подобных слагаемых.

Свойства степени с натуральным показателем.

Одночлены и многочлены. Степень многочлена. Сложение, вычитание, умножение многочленов. Формулы сокращённого умножения: квадрат суммы и квадрат разности. Формула разности квадратов. Разложение многочленов на множители.

Уравнения

Уравнение, корень уравнения, правила преобразования уравнения, равносильность уравнений.

Линейное уравнение с одной переменной, число корней линейного уравнения, решение линейных уравнений. Составление уравнений по условию задачи. Решение текстовых задач с помощью уравнений.

Линейное уравнение с двумя переменными и его график. Система двух линейных уравнений с двумя переменными. Решение систем уравнений способом подстановки. Примеры решения текстовых задач с помощью систем уравнений.